Skip to main content

Ultrafast Magnetic Field Generation in Molecular \(\pi \)-Orbital Resonance by Circularly Polarized Laser Pulses

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XVI

Part of the book series: Topics in Applied Physics ((TAP,volume 141))

  • 711 Accesses

Abstract

Optically induced magnetic fields,from the femtosecond nuclear to attosecond electron time scales are shown to be produced by intense ultrashort laser pulses due to highly nonlinear nonperturbative optical response. The light-matter interaction results in coherent electron currents, giving rise to magnetic field generation. Schemes with bichromatic high-frequency co-rotating and counter-rotating circularly polarized UV light pulses are used to produce the spatial and temporal evolution of the generated magnetic field. The one-electron molecular ion H\(_2^+\) as a benchmark model is used to describe the ultrafast photophysics process. Under the condition of molecular resonance excitation, results obtained from ab-inito simulations show a strong dependence on the molecular alignment. In bicircular polarization processes, the interference effects between multiple resonant excitations modulate the evolution of the generated magnetic field, thus leading to pulse relative phase dependence. It is found that the modulation of generated magnetic fields is dependent on the pulse frequency and helicity combination. Molecular resonant excitation induces coherent ring electron currents, resulting in suppression of the phase dependence. Pulse helicity effects illustrate laser induced electron dynamics in bichromatic circular polarization processes. These highly nonlinear phenomena are described by attosecond ionisation and coherent electron current models. The results offer a guiding principle for generating ultrafast magnetic fields and for studying coherent electron dynamics in complex molecular systems.

Kai-Jun Yuan is a deceased author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  2. Z. Chang, P.B. Corkum, S.R. Leone, Attosecond optics and technology: progress to date and future prospects. J. Opt. Soc. Am. B 33, 1081 (2016)

    Article  ADS  Google Scholar 

  3. S. Chelkowski, G.L. Yudin, A.D. Bandrauk, Observing electron motion in molecules. J. Phys. B 39, S409 (2006)

    Article  ADS  Google Scholar 

  4. H. Niikura, D.M. Villeneuve, P.B. Corkum, Mapping attosecond electron wave packet motion. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  5. H.C. Shao, A.F. Starace, Detecting electron motion in atoms and molecules. Phys. Rev. Lett. 105 (2010)

    Google Scholar 

  6. M.J.J. Vrakking, T.E. Elsaesser, Nature Photon. X-Ray Photonics: X-Rays Inspire Electron Movies 6, 645 (2012)

    Google Scholar 

  7. T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, H.J. Wörner, Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Exp. 25, 27506 (2017)

    Article  ADS  Google Scholar 

  8. K.K. Lange, E.I. Tellgren, M.R. Hoffmann, T. Helgaker, A paramagnetic bonding mechanism for diatomics in strong magnetic fields. Science 337, 327 (2012)

    Google Scholar 

  9. A. Matos-Abiague, J. Berakdar, Photoinduced charge currents in mesoscopic rings. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  10. C. La-O-Vorakiat, E. Turgut, C.A. Teale, H.C. Kapteyn, M.M. Murnane, S. Mathias, M. Aeschlimann, C.M. Schneider, J.M. Shaw, H.T. Nembach, T.J. Silva, Ultrafast demagnetization measurements using extreme ultraviolet light: comparison of electronic and magnetic contributions. Phys. Rev. X 2 (2012)

    Google Scholar 

  11. J.-Y. Bigot, M. Vomir, E. Beaurepaire, Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5, 515 (2009)

    Article  Google Scholar 

  12. C.D. Stanciu, F. Hansteen, A.V. Kimel, A. Kirilyuk, A.T. Tsukamoto, A. Itoh, T. Rasing, All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99 (2007)

    Google Scholar 

  13. C.-H. Lambert1, S. Mangin, B.S.D.C.S. Varaprasad, Y.K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, E.E. Fullerton, All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337 (2014)

    Google Scholar 

  14. B. Vodungbo, J. Gautier, G. Lambert, A. B. Sardinha, M. Lozano, S. Sebban, M. Ducousso, W. Boutu, K. Li, B. Tudu, M. Tortarolo, R. Hawaldar, R. Delaunay, V. L \({}^{..}\) ®pez-Flores, J. Arabski, C. Boeglin, H. Merdji, P. Zeitoun, J. Luning, Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network. Nat. Commun. 3, 999 (2012)

    Google Scholar 

  15. G.P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, T.F. George, Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism. Nat. Phys. 5, 499 (2009)

    Article  Google Scholar 

  16. G.P. Zhan, Y. Bai, W. Hübner, G. Lefkidis, T.F. George, Understanding laser-induced ultrafast magnetization in ferromagnets: first-principles investigation. J. Appl. Phys. 103, 07B113 (2008)

    Article  Google Scholar 

  17. I. Barth, J. Manz, Y. Shigeta, K. Yagi, Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin. J. Am. Chem. Soc. 128, 7043 (2006)

    Article  Google Scholar 

  18. I. Barth, J. Manz, Electric ring currents in atomic orbitals and magnetic fields induced by short intense circularly polarized \(\pi \) laser pulses. Phys. Rev. A 75 (2007)

    Google Scholar 

  19. I. Barth, L. Serrano-Andrés, T. Seideman, Nonadiabatic orientation, toroidal current, and induced magnetic field in BeO molecules. J. Chem. Phys. 129 (2008)

    Google Scholar 

  20. I. Barth, C. Bressler, S. Koseki, J. Manz, Strong nuclear ring currents and magnetic fields in pseudorotating OsH\(_4\) molecules induced by circularly polarized laser pulses. Chem. Asian J. 7, 1261 (2012)

    Google Scholar 

  21. I. Barth, J. Manz, L. Serrano-Andrés, Quantum simulations of toroidal electric ring currents and magnetic fields in linear molecules induced by circularly polarized laser pulses. Chem. Phys. 347, 263–271 (2008)

    Google Scholar 

  22. K. Köksal, F. Koç, The effect of twisted light on the ring-shaped molecules: the manipulation of the photoinduced current and the magnetic moment by transferring spin and orbital angular momentum of high frequency light. Comput. Theor. Chem. 1009, 203 (2017)

    Google Scholar 

  23. K. Nobusada, K. Yabana, Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses. Phys. Rev. A 75 (2007)

    Google Scholar 

  24. D. Jia, J. Manz, B. Paulus, V. Pohl, J.C. Tremblay, Y. Yang, Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem. Phys. 482, 146 (2017)

    Article  Google Scholar 

  25. G. Hermann, C. Liu, J. Manz, B. Paulus, J.F. Pérez-Torres, V. Pohl, J.C. Tremblay, Multidirectional angular electronic flux during adiabatic attosecond charge migration in excited benzene. J. Phys. Chem. A 120, 5360 (2016)

    Article  Google Scholar 

  26. G. Hermann, C. Liu, J. Manz, B. Paulus, V. Pohl, J.C. Tremblay, Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state. Chem. Phys. Lett. 683, 553 (2017)

    Article  ADS  Google Scholar 

  27. H. Ding, D. Jia, J. Manz, Y. Yang, Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI\(^+\). Mol. Phys. 115, 1813 (2017)

    Article  ADS  Google Scholar 

  28. D. Jia, J. Manz, Y. Yang, Generation of electronic flux during the femtosecond laser pulse tailored to induce adiabatic attosecond charge migration in HCCI\(^+\). J. Mod. Opt. 64, 960 (2017)

    Article  ADS  Google Scholar 

  29. M. Kanno, H. Kono, Y. Fujimura, S.H. Lin, Nonadiabatic response model of laser-induced ultrafast \(\pi \)-electron rotations in chiral aromatic molecules. Phys. Rev. Lett. 104, (2010)

    Google Scholar 

  30. H. Mineo, S.H. Lin, Y. Fujimura, Coherent -electron dynamics of (p)-2,2ä-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current. J. Chem. Phys. 138 (2013)

    Google Scholar 

  31. H. Mineo, Y. Fujimura, Quantum design of \(\pi \)-electron ring currents in polycyclic aromatic hydrocarbons: Parallel and antiparallel ring currents in naphthalene. J. Phys. Chem. Lett. 8, 2019 (2017)

    Article  Google Scholar 

  32. M. Kanno 1, H. Kono, Y. Fujimura, Laser-control of ultrafast \(\pi \)-electron ring currents in aromatic molecules: Roles of molecular symmetry and light polarization. Appl. Sci. 8, 2347 (2018)

    Google Scholar 

  33. K.J. Yuan, A.D. Bandrauk, Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses. J. Phys. B 45 (2012)

    Google Scholar 

  34. K.J. Yuan, H. Lu, A.D. Bandrauk, High-order-harmonic generation in molecular sequential double ionization by intense circularly polarized laser pulses. Phys. Rev. A 92 (2015)

    Google Scholar 

  35. K.J. Yuan, A.D. Bandrauk, Attosecond-magnetic-field-pulse generation by intense few-cycle circularly polarized UV laser pulses. Phys. Rev. A 88 (2013)

    Google Scholar 

  36. K.J. Yuan, A.D. Bandrauk, Attosecond-magnetic-field-pulse generation by coherent circular molecular electron wave packets. Phys. Rev. A 91 (2015)

    Google Scholar 

  37. A.D. Bandrauk, K.J. Yuan, Circularly polarised attosecond pulses: Generation and applications. Mol. Phys. 114, 344 (2016)

    ADS  Google Scholar 

  38. A.D. Bandrauk, J. Guo, A.D. Bandrauk, Circularly polarized attosecond pulse generation and applications to ultrafast magnetism. J. Opt. 19 (2017)

    Google Scholar 

  39. J.-W. Kim, M. Vomir, J.-Y. Bigot, Ultrafast magnetoacoustics in nickel films. Phys. Rev. Lett. 109 (2012)

    Google Scholar 

  40. J.-Y. Bigot, Ultrafast magnetism: down to the nanometre scale. Nat. Mater. 12, 283 (2013)

    Article  ADS  Google Scholar 

  41. X. Zhang, X. Zhu, D. Wang, L. Li, X. Liu, Q. Liao, P. Lan, P. Lu, Ultrafast oscillating-magnetic-field generation based on electronic-current dynamics. Phys. Rev. A 99 (2019)

    Google Scholar 

  42. H. Ibrahim, C. Lefebvre, A.D. Bandrauk, A. Staudte, F. Légaré, H\(_2\): The benchmark molecule for ultrafast science and technologies. J. Phys. B 51 (2018)

    Google Scholar 

  43. K.J. Yuan, A.D. Bandrauk, Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses. Phys. Chem. Chem. Phys. 19, 25846 (2017)

    Article  Google Scholar 

  44. K.J. Yuan, A.D. Bandrauk, Ultrafast X-ray photoelectron imaging of attosecond electron dynamics in molecular coherent excitation. J. Phys. Chem. A 123, 1328 (2019)

    Article  Google Scholar 

  45. S.R. Leone, C.W. McCurdy, J. Burgdörfer, L.S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C.H. Greene, M. Ivanov, R. Kienberger, U. Keller, M.F. Kling, Z.-H. Loh, T. Pfeifer, A.N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, M.J.J. Vrakking, What will it take to observe processes in ‘real time’? Nat. Photon. 8, 162 (2014)

    Article  ADS  Google Scholar 

  46. P.M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horný, E.F. Penka, G. Grassi, O.I. Tolstikhin, J. Schneider, F. Jensen, L.B. Madsen, A.D. Bandrauk, F. Remacle, H.J. Wörner, Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 790, 350 (2015)

    Google Scholar 

  47. M. Kanno, H. Kono, S.H. Lin, Y. Fujimura, Laser-induced electronic and nuclear coherent motions in chiral aromatic molecules, in Quantum Systems in Chemistry and Physics, Progress in Methods and Applications, eds. by K. Nishikawa, J. Maruani, E. J. Brändas, G. Delgado-Barrio, P. Piecuch, (Springer, Dordrecht, Netherlands, 2012), pp 121–148

    Google Scholar 

  48. K.J. Yuan, J. Guo, A.D. Bandrauk, Generation of ultrafast magnetic fields from molecular coherent electron currents. Phys. Rev. A 98 (2018)

    Google Scholar 

  49. T. Zuo, A.D. Bandrauk, High-order harmonic generation in intense laser and magnetic fields. J. Nonlinear Opt. Phys. Mater. 04, 533 (1995)

    Article  ADS  Google Scholar 

  50. A.D. Bandrauk, H.Z. Lu, Controlling harmonic generation in molecules with intense laser and static magnetic fields: Orientation effects. Phys. Rev. A 68 (2003)

    Google Scholar 

  51. S. Long, W. Becker, J.K. McIver, Model calculations of polarization-dependent two-color high-harmonic generation. Phys. Rev. A 52, 2262 (1995)

    Article  ADS  Google Scholar 

  52. D.B. Milošević, W. Becker, R. Kopold, Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61 (2000)

    Google Scholar 

  53. J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Manakov, A.V. Meremianin, A.F. Starace, Electron vortices in photoionization by circularly polarized attosecond pulses. Phys. Rev. Lett. 115, 113004 (2015)

    Google Scholar 

  54. J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, A.F. Starace, Multistart spiral electron vortices in ionization by circularly polarized UV pulses. Phys. Rev. A 91, 013408 (2016)

    Google Scholar 

  55. K.J. Yuan, A.D. Bandrauk, Attosecond-magnetic-field-pulse generation by electronic currents in bichromatic circularly polarized UV laser fields. Phys. Rev. A 92 (2015)

    Google Scholar 

  56. J. Guo, K.J. Yuan, H. Lu, A.D. Bandrauk, Spatiotemporal evolution of ultrafast magnetic field generation in molecules with intense bichromatic circularly polarized uv laser pulses. Phys. Rev. A 99 (2019)

    Google Scholar 

  57. S. Eisebitt, M. Lörgen, W. Eberhardt, J. Luning, J. Stöhr, C.T. Rettner, O. Hellwig, E.E. Fullerton, G. Denbeaux, Polarization effects in coherent scattering from magnetic specimen: Implications for x-ray holography, lensless imaging, and correlation spectroscopy. Phys. Rev. B 68 (2003)

    Google Scholar 

  58. D. Baykusheva, M.S. Ahsan, N. Lin, H.J. Wörner, Bicircular high-harmonic spectroscopy reveals dynamical symmetries of atoms and molecules. Phys. Rev. Lett. 116 (2016)

    Google Scholar 

  59. K. Lin, X. Gong, Q. Song, Q. Ji, W. Zhang, J. Ma, P. Lu, H. Pan, J. Ding, H. Zeng, J. Wu, Directional bond breaking by polarization-gated two-color ultrashort laser pulses. J. Phys, B 49 (2016)

    Google Scholar 

  60. E.A. Pronin, A.F. Starace, M.V. Frolov, N.L. Manakov, Perturbation theory analysis of attosecond photoionization. Phys. Rev. A 80 (2009)

    Google Scholar 

  61. E.A. Pronin, A.F. Starace, L.Y. Peng, Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse. Phys. Rev. A 84 (2011)

    Google Scholar 

  62. K.-J. Yuan, A.D. Bandrauk, Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses. Phys. Rev. A 85 (2012)

    Google Scholar 

  63. J. Bakos, A. Kiss, L. Szabó, M. Tendler, Light intensity dependence of the multiphoton ionization probability in the resonance case. Phys. Lett. A 41, 163 (1972)

    Article  ADS  Google Scholar 

  64. P. Agostini, P. Bensoussan, Resonant three-photon ionization of potassium with circularly and linearly polarized light. Appl. Phys. Lett. 24, 216 (1974)

    Article  ADS  Google Scholar 

  65. A.D. Bandrauk, H. Shen, Exponential split operator methods for solving coupled time-dependent Schrödinger equations. J. Chem. Phys. 99, 1185 (1993)

    Article  ADS  Google Scholar 

  66. A.D. Bandrauk, H.Z. Lu, Exponential propagators (integrators) for the time-dependent Schrödinger equation. J. Theor. Comput. Chem. 12, 1340001 (2013)

    Article  Google Scholar 

  67. O.D. Jefimenko, Electricity and magnetism: An Introduction to the Theory of Electric and Magnetic Fields, 2nd edn. (Electret Scientific Co., Star City, West Virginia, 1989)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the National Natural Science Foundation of China (Grants Nos. 11974007 and 11574117). The authors also thank Compute Canada for access to massively parallel computer clusters, and the Natural Sciences and Engineering Research Council of Canada and the Fonds de Recherche du Québec—Nature et Technologies for supporting their research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André D. Bandrauk .

Editor information

Editors and Affiliations

Appendices

Appendix A: Interference in Multi-pathway Photoionization

We here derive the multi-pathway electron interference modes in bichromatic fields based on the perturbation ionization theory [60,61,62]. The pulse frequencies \(\omega _2=2\omega _1\), where \(\omega _1<I_p\) and \(\omega _2>I_p\), and \(I_p\) the molecular ionization potential, are used. The bichromatic circularly polarized laser pulses can produce photoelectron wave packets with the same kinetic energies \(E_e=2\omega _1-I_p=\omega _2-I_p\), which then interfere each other in the continuum.

For direct one \(\omega _2\) photon ionization processes by laser pulses, the relevant transition matrix element \(\mathscr {A} ^{(2)}\) can be expressed simply in the dipole form

$$\begin{aligned} \mathscr {A}^{(2)} = \langle \psi _I | \mathbf{D }\cdot \mathbf{F }_2(\omega _2 )|\psi _0 \rangle =\mathscr {W}^{(2)}\mathscr {F}_2(\omega _2), \end{aligned}$$
(6.10)

with the first order ionization amplitude

$$\begin{aligned} \mathscr {W}^{(2)}=\langle \psi _I |\mathbf { {D}} \cdot \mathbf{e }|\psi _0 \rangle ,\end{aligned}$$
(6.11)

where \(\psi _0\) and \(\psi _I \) are respectively the initial ground state and the continuum state. \( \mathbf{D } \) is the electric dipole operator. \( \mathbf{F} _2(\omega _2)=\mathbf{e}\mathscr {F}_2(\omega _2)=E(\omega _2)e^{i\phi _2}\) is the ionizing pulse amplitude with unit vector \(\mathbf{e }\) and field \(E(\omega _2)\).

For the \(\omega _1\) laser pulse, at least a two \(\omega _1+\omega _1\) photon absorption is required to ionize H\(_2^+\). The transition matrix element reads as

$$\begin{aligned} \mathscr {A}^{(1)}=\mathscr {W}^{(1)} \mathscr {F}^2_1(\omega _1) \end{aligned}$$
(6.12)

with the amplitude

$$\begin{aligned} \mathscr {W}^{(1)}\sim & {} \int dE \frac{\langle \psi _I |\mathbf {D} \cdot \mathbf {e} |\psi _n\rangle \langle \psi _n|\mathbf {D}\cdot \mathbf {e}|\psi _0\rangle }{E_{1s\sigma _g}-E_{ni}+\omega _1+i\Delta \epsilon }, \end{aligned}$$
(6.13)

where \(\psi _n\) and \(E_{ni}\) are the wavefunction and energy of the intermediate (virtual) electronic state and \(\Delta \epsilon \) is the level width, and laser fields \(\mathscr {F}_1(\omega _1)=E(\omega _1)e^{i\phi _1}\). In equation (6.13) we see that the ionization amplitude \(\mathscr {W}^{(1)}\) is determined by the field-free structure of the molecule and the laser pulse [63].

For a two \(\omega _1\) photon ionization with an intermediate resonant excited state, the transition matrix element \(\mathscr {A}^{(1)}\) can be written as [64]

$$\begin{aligned} \mathscr {A}^{(1)}=\mathscr {A}^{iR}T_R\mathscr {A}^{Rc}, \end{aligned}$$
(6.14)

where \(T_R\) is the life time of the intermediate resonant state. \(\mathscr {A}^{iR}\) is the one photon transition between the initial ground state and the intermediate resonant electronic state, which is determined by the pulse area theorem. \(\mathscr {A}^{Rc}\) is the photoionization of the intermediate resonant electronic state.

For photoionization by bichromatic laser pulses, that is, simultaneous two \(\omega _1 + \omega _1\) photon and one \(\omega _2=2\omega _1\) photon ionization, the total transition probability \({\mathscr {P}}\) is the square of the two amplitudes with an interference term of the cross products of the two one- and two-photon ionization amplitudes, that is,

$$\begin{aligned} \mathscr {P}=\mathscr {P}^{(1)} +\mathscr {P}^{(2)}+\mathscr {P}^{(1,2)}, \end{aligned}$$
(6.15)

where \(\mathscr {P}^{(1)}=|\mathscr {|}A^{(1)}|^2\), \(\mathscr {P}^{(2)}=\mathscr {A}^{(2)}are|^2\), and \(\mathscr {P}^{(1,2)}\) is the interference term which can be simply written as

$$\begin{aligned} \mathscr {P}^{(1,2)}= & {} \mathscr {A} ^{(1) *}\mathscr {A}^{(2)}+\mathscr {A} ^{(1)}\mathscr {A}^{(2)*} \nonumber \\= & {} 2\mathscr {W}^{(1)}\mathscr {W}^{(2)}E ^2(\omega _1)E (\omega _2)\cos (\Delta \eta ), \end{aligned}$$
(6.16)

where \(\mathscr {W}^{(1)}\) and \(\mathscr {W} ^{(2)}\) are the two \(\omega _1\) and one \(\omega _2\) photon transition amplitudes corresponding to (6.11) and (6.13). The phase difference \(\Delta \eta =\Delta \phi +\Delta \xi \). It should be noted that the phase difference depends on the helicity of bichromatic fields. For a co-rotating case, the relative pulse phase difference \(\Delta \phi =\phi _2-2\phi _1\) and \(\Delta \xi =\xi _{\omega _2}-\xi _{\omega _1}\), where \(\xi _{\omega _1}\) and \(\xi _{\omega _2}\) are respectively the phases of the continuum electron wave packets from two \(\omega _1\) and one \(\omega _2\) photoionization, whereas for a counter-rotating case, \(\Delta \phi =\phi _2+2\phi _1\) and \(\Delta \xi =\xi _{\omega _2}+\xi _{\omega _1}\). The phase difference \(\Delta \xi \) is determined by the molecular intrinsic characteristic.

Appendix B: Numerical Methods

For the aligned molecule ion H\(_2^+\) within Born-Oppenheimer approximation and static nuclear frames, the corresponding 3D TDSE in cylindrical coordinates \(\mathbf{r} =(\rho ,\theta ,z\)) reads as,

$$\begin{aligned} i \frac{\partial }{\partial t} \psi (\mathbf{r} ,t)=\left[ -\frac{1}{2}\bigtriangledown _\mathbf{r}^2 +V_{en}(\mathbf{r} )+V_L (\mathbf{r} ,t)\right] \psi (\mathbf{r} ,t). \end{aligned}$$
(6.17)

\(\bigtriangledown _\mathbf{r}\) is the Laplacian operator, and \(V_{en}\) is the electron-nuclear potential. The circularly polarized laser pulse propagates along the z axis, perpendicular to the (xy) plane with \(x=\rho \cos \theta \) and \(y=\rho \sin \theta \), Fig. 6.1. The radiative interaction between the laser field and the electron \(V_L(\mathbf{r} )=\mathbf{r} \cdot \mathbf{E} (t)\) is described in the length gauge for a single color circularly polarized pulse,

$$\begin{aligned} \mathbf{E} (t)= & {} E f(t) [\hat{e}_x \cos (\omega t) +\hat{e}_y \xi \sin (\omega t) ], \end{aligned}$$
(6.18)

where \(\hat{e}_{x/y}\) is the laser polarization direction and the symbol \(\xi =\pm 1\) denotes the helicity of the field, \(\xi =1\) for right hand and \(\xi =-1\) for left hand, or a bichromatic circularly polarized pulse

$$\begin{aligned} \mathbf{E} (t)= & {} \mathbf{E} _1(t)+\mathbf{E} _2(t) \nonumber \\= & {} E f(t)\left\{ \begin{array}{c} \hat{e}_x [ \cos (\omega _1 t+\phi _1)+\cos (\omega _2 t+\phi _2)] \\ \hat{e}_y [ \sin (\omega _1 t+\phi _1)+ \xi \sin (\omega _2 t+\phi _2) ] \end{array}\right. , \end{aligned}$$
(6.19)

where \(\xi \) presents the helicity of the combined field, i.e., co-rotating (\(\xi =1\)) and counter-rotating (\(\xi =-1\)) components. \(\phi _{1}\) and \(\phi _2\) are CEPs of the pulses \(\mathbf{E} _1(t)\) and \(\mathbf{E} _2(t)\). A smooth \(\sin ^2(\pi t /T_{lp})\) pulse envelope f(t) for maximum amplitude E, intensity \(I =I_x=I_y={ c\varepsilon _0 E ^2}/2\) and duration \(T_{lp}=n\tau _{1}\) is adopted, where one optical cycle period \(\tau _{1,2}=2 \pi /\omega _{1,2}\), n=5 cycles. This pulse satisfies the total zero area \(\int E(t) dt=0\) in order to exclude static field effects [1].

The 3D TDSE in (6.17) is propagated by a second order split operator method which conserves unitarity in the time step \(\Delta t\) combined with a fifth order finite difference method and Fourier transform technique in the spatial steps \(\Delta \rho \), \(\Delta z\), and \(\Delta \theta \) [65, 66]. The initial electron wavefunction \(\psi (\mathbf{r} , t = 0)\) is prepared in the ground \(1s\sigma _g\) state calculated by propagating an initial appropriate wavefunction in imaginary time using the zero-field TDSE in (6.17). The time step is taken to be \(\Delta t=0.01\) a.u.=0.24 as. The spatial discretization is \(\Delta \rho =\Delta z=0.25\) a.u. for a radial grid range \(0 \le \rho \le 128\) a.u. (6.77 nm) and \(|z|\le \) 32 a.u. (1.69 nm), and the angle grid size \(\Delta \theta =0.025\) radian. To prevent unphysical effects due to the reflection of the wave packet from the boundary, we multiply \(\psi (\rho ,\theta ,z,t)\) by a “mask function" or absorber in the radial coordinates \(\rho \) with the form \(\cos ^{1/8}[\pi (\rho -\rho _\text {a})/2\rho _{\text {abs}}]\). For all results reported here we set the absorber domain at \(\rho _{\text {a}}=\rho _{\text {max}}-\rho _{\text {abs}}\)=104 a.u. with \(\rho _{\text {abs}}=24\) a.u., exceeding well the field induced electron oscillation \(\alpha _d={E }/{\omega _{1/2}^2}\) of the electron [35].

The time dependent electronic current density is defined by the quantum expression in the length gauge,

$$\begin{aligned} \mathbf{j} (\mathbf{r} ,t)=\frac{i}{2}[\psi (\mathbf{r} ,t) \nabla _\mathbf{r } \psi ^*(\mathbf{r} ,t) -\psi ^*(\mathbf{r} ,t)\nabla _\mathbf{r }\psi (\mathbf{r} ,t)], \end{aligned}$$
(6.20)

\(\psi (\mathbf{r} ,t)\) is the exact Born-Oppenheimer (static nuclei) electron wave function obtained from the TDSE and \(\nabla _\mathbf{r }=\mathbf{e} _\rho \nabla _\rho +\mathbf{e} _\theta \frac{1}{\rho }\nabla _\theta +\mathbf{e} _z\nabla _z\) in cylindrical coordinates. Then the corresponding time dependent magnetic field is calculated using the following classical Jefimenko’s equation [67],

(6.21)

where \(t_r=t-r/c\) is the retarded time and \(\mu _0=4\pi \times 10^{-7}\) NA\(^{-2}\) (6.692\(\times 10^{-4}\) a.u.) is called the permeability of free space. Units of \(B(\mathbf{r} ,t)\) are Teslas (1T=\(10^{4}\) Gauss). For the static zero-field time-independent conditions occurring after the pulse, then (6.21) reduces to the classical Biot-Savart law [67].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, KJ., Guo, J., Bandrauk, A.D. (2021). Ultrafast Magnetic Field Generation in Molecular \(\pi \)-Orbital Resonance by Circularly Polarized Laser Pulses. In: Yamanouchi, K., Midorikawa, K., Roso, L. (eds) Progress in Ultrafast Intense Laser Science XVI. Topics in Applied Physics, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-030-75089-3_6

Download citation

Publish with us

Policies and ethics