Skip to main content

Constraints on Evergreen Broad-Leaved Forests in the Southeastern United States

  • Chapter
  • First Online:
Tools for Landscape-Scale Geobotany and Conservation

Part of the book series: Geobotany Studies ((GEOBOT))

  • 485 Accesses

Abstract

In a humid, mild-winter warm-temperate climate, as occurs across most of the southeastern US coastal plain, one would normally expect to find “laurel forests” dominated by temperate-zone evergreen tree taxa, as in other warm-temperate regions. Instead, on the sandy uplands of the geologically young coastal plain, one finds a topogenic, landscape-scale mosaic of wetlands, forests, open woodlands and scrub, some of it maintained by recurring fires. As a result, the potential over the coastal plain is not extensive forest but rather, where soil, topography and fire permit, a slow progression to woods dominated by coriaceous or harder-leaved evergreen broad-leaved trees, with somewhat open canopies and a greater role for deciduous trees, even at maturity. Colder winters to the north constrain most evergreen forest types, but there are also subtler, non-climatic constraints. The purpose of this paper is to describe briefly the main evergreen broad-leaved forest types and their dynamics, and to evaluate the climatic and non-climatic factors that constrain their distributions, especially within the context of local climatic warming and drying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander TR (1953) Plant succession on Key Largo, Florida, involving Pinus caribaea and Quercus virginiana. Q J Fla Acad Sci 16(3):133–138

    Google Scholar 

  2. Angell JK (2006) Changes in the 300-mb north circumpolar vortex, 1963–2001. J Climate 19:2984–2994

    Article  Google Scholar 

  3. Bartram W (1791) (facs. 1973). Travels through North and South Carolina, Georgia, East and West Florida. Beehive Press, Savannah. 142 pp (facs. of London eds.)

    Google Scholar 

  4. Bazzaz FA (1979) The physiological ecology of plant succession. Ann Rev Ecol Syst 10:351–371

    Article  Google Scholar 

  5. Blaisdell RS, Wooten J, Godfrey RK (1974) The role of magnolia and beech in forest processes in the Tallahassee, Florida, Thomasville, Georgia, area. Procs Tall Timbers Fire Ecol Conf 13:363–397

    Google Scholar 

  6. Boufford DE, Spongberg SA (1983) Eastern Asian-Eastern North American phytogeographical relationships a history from the time of linnaeus to the twentieth century. Annals Missouri Bot Garden 70(3):423–439

    Article  Google Scholar 

  7. Bourdeau PF, Oosting HJ (1959) The maritime live oak forest in North Carolina. Ecology 40:148–152

    Article  Google Scholar 

  8. Box EO (1986) Some climatic relations of the vegetation of Argentina. global perspective. Veröff. Geobot. Inst. ETH, Stiftung Rübel (Zürich), pp 181–216

    Google Scholar 

  9. Box EO (1995a) Climatic relations of the forests of east and Southeast Asia. In: Box EO, et al. (eds) Vegetation Science in Forestry, Handbook of Vegetation Science, 12/1. Kluwer, Dordrecht, pp 23–55

    Google Scholar 

  10. Box EO (1995b) Global potential natural vegetation: dynamic benchmark in the era of disruption. In: Murai Sh (ed) Toward Global Planning of Sustainable Use of the Earth – Development of Global Eco-engineering. Elsevier, Amsterdam, pp 77–95

    Google Scholar 

  11. Box EO (1997) Bioclimatic position of evergreen broad-leaved forests. In: Island and high-mountain vegetation: biodiversity, bioclimate and conservation. Procs., annual IAVS meeting, Tenerife, April 1993. Universidad de La Laguna, Servicio de Publicac., Tenerife (Canary Islands), pp 17–38

    Google Scholar 

  12. Box EO (2016) Global bioclimatic zonation. In: Box EO (ed) Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Springer, pp 3–52

    Google Scholar 

  13. Box EO, Crumpacker DW, Hardin ED (1993) A climatic model for plant species locations in Florida. J Biogeography 20:629–644

    Article  Google Scholar 

  14. Box EO, Fujiwara K (1988) Evergreen broad-leaved forests of the southeastern United States: preliminary description. Bull. Inst Envl Sci Techn Yokahama Nat Univ 15:71–93

    Google Scholar 

  15. Box EO, Fujiwara K (2013) Vegetation types and their broad-scale distribution. In: van der Maarel E (ed) Vegetation Ecology, 2nd edn. Blackwell Scientific, Oxford, , pp 455–485

    Google Scholar 

  16. Box EO, Fujiwara K (2015) Warm-temperate deciduous forests around the northern hemisphere Springer. Cham, Heidelberg, p 292

    Book  Google Scholar 

  17. Bratton SP (1993) Survivorship of evergreen hardwoods after wildfire in maritime forest, Cumberland Island National Seashore, Georgia. Castanea 58:34–44

    Google Scholar 

  18. Braun EL (1950) Deciduous forests of eastern North America. Blakiston, Philadelphia, p 596

    Google Scholar 

  19. Braun-Blanquet J (1964) (1928, 1951). Pflanzensoziologie: Grundzüge der Vegetationskunde, 3rd edn. Springer, Berlin, p 330 (English 3rd ed. 1965: Plant Sociology, Hafner, New York)

    Google Scholar 

  20. Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annual Review Plant Physiol 27:507–528

    Article  Google Scholar 

  21. Cain SA (1939) The climax and its complexities. Amer Midland Naturalist 21:146–181

    Article  Google Scholar 

  22. Cavanaugh K, et al (2019) Climate-driven regime shifts in a mangrove-salt marsh ecotone over the past 250 years. Procs Natl Acad Sci 116(43):21602–21608

    Google Scholar 

  23. Cavender-Bares J, Apostol S, Moya I, Briantais J-M, Bazzaz FA (1999) Chilling-induced photoinhibition in two oak species: are evergreen leaves inherently better protected than deciduous leaves? Photosynthetica 36(4):587–596

    Article  Google Scholar 

  24. Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Ann Rev Ecol Syst. 13:229–259

    Article  Google Scholar 

  25. Chen E, Gerber JF (1990) Climate. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida, pp 11–34

    Google Scholar 

  26. Chen Y-F (1995–98) Taiwan Zhibei [Vegetation of Taiwan]. (in Chinese). Yushan, Chenxing, vol 3. Qianwe Publishers, Taipei, pp 303 + 621 + 632

    Google Scholar 

  27. Christensen NL (2000) (1988) Vegetation of the Southeastern coastal plain. In: Barbour MG, Billings WD (eds) North American Terrestrial Vegetation, 2nd edn. Cambridge University Press, pp 398–448

    Google Scholar 

  28. Clements FE (1936) Nature and structure of the climax. J Ecol 24:253–284

    Article  Google Scholar 

  29. Clewell, A. F. 1985. Guide to the Vascular Plants of the Florida Panhandle. 605 pp.

    Google Scholar 

  30. Clewell AF, Tobe JD (2011) Cinnamomum-Ardisia forest in Northern Florida. Castanea 76(3):245–254

    Article  Google Scholar 

  31. Cowles HC (1911) The causes of vegetational cycles. Ann Assoc Amer Geographers 1:3–20

    Article  Google Scholar 

  32. Crumpacker DW, Box EO, Hardin ED (2001) Temperate-subtropical transition areas for native trees and shrubs in Florida: present locations, predicted changes under climatic warming, and implications for conservation. Nat Areas J 21(2):136–148

    Google Scholar 

  33. Daubenmire RF (1990) The Magnolia grandiflora - Quercus virginiana forest of Florida. Amer Midland Naturalist 123:331–347

    Article  Google Scholar 

  34. Delcourt HR, Delcourt PA (1974) Primeval magnolia-holly-beech climax in Louisiana. Ecology 55:638–644

    Article  Google Scholar 

  35. Delcourt HR, Delcourt PA (1975) The Blufflands: Pleistocene pathways into the Tunica Hills. Amer Midland Naturalist 94:385–400

    Article  Google Scholar 

  36. Delcourt HR, Delcourt PA (1977) Pre-settlement magnolia-beech climax of the Gulf Coastal Plain: quantitative evidence from the Apalachicola River Bluffs, north-central Florida. Ecology 58:1085–1093

    Article  Google Scholar 

  37. Dhaila S, Singh SP, Negi GCS, Rawat YS (1995) Shoot-growth phenology of co-existing evergreen and deciduous species in an oak forest. Ecol Res 10:151–159

    Article  Google Scholar 

  38. Duncan WH, Duncan MB (1988) Trees of the Southeastern United States. Univ, Georgia Press, Athens, p 322

    Google Scholar 

  39. Eyre SR (1968) Vegetation and Soils: A World Picture, 2nd edn. Arnold Co., London, p 314

    Google Scholar 

  40. Fenneman NM (1931) Physiography of Eastern United States. McGraw-Hill, New York

    Google Scholar 

  41. Fenneman NM (1946) Physical Divisions of the United States. Map at scale 1:7,000,000. US Geol. Survey, Reston (Virginia)

    Google Scholar 

  42. Fernald ML (1946) Identification and re-identification of North American plants: the identity of Quercus laurifolia. Rhodora 48:137–145

    Google Scholar 

  43. Fowells HA (1965) Silvics of Forest Trees of the United States. Dept. Agric. Handbook 271, Washington, 762pp

    Google Scholar 

  44. Fujiwara K (1981–86) 日本の常緑広葉森林の群落体系(Nihon-no jōryoku kōyō shinrin-no gunraku taikei) [Phytosociological investigation of the evergreen broad-leaved forests of Japan]. Bull Inst Env Sci Tech Yokohama Nat Univ 7:67–133, 8:121–150, 9:139–160, 13:99–149 (in Japanese)

    Google Scholar 

  45. Fujiwara K (1987) Aims and methods of phytosociology or “vegetation science.” In: Takeda Y (ed) Papers on Plant Ecology and Taxonomy to the Memory of Dr. Satoshi Nakanishi, pp 607–628. Kobe Geobotan. Society

    Google Scholar 

  46. Fujiwara K, Box EO (1994) Evergreen broad-leaved forest region of the Southeastern United States. In: Miyawaki A, et al. (eds) Vegetation in Eastern North America, pp 273–312. Tokyo Univ. Press

    Google Scholar 

  47. Fujiwara K, Box EO (1999) Evergreen broad-leaved forests in Japan and Eastern North America. In: Klötzli F, Walther G-R (eds) Conference on Recent Shifts in Vegetation Boundaries of Deciduous Forests, especially Due to General Global Warming, pp 273–300. Birkhäuser

    Google Scholar 

  48. Gano L (1917) A study in physiographic ecology in northern Florida. Bot Gaz 63:337–372

    Article  Google Scholar 

  49. Gaussen H (1955) Les climates analogues à l’echelle du monde. Compt Rend Acad Agr, France, p 41

    Google Scholar 

  50. George MF, Burke MJ, Pellett HM, Johnson AG (1974) Low-temperature exotherms and woody-plant distribution. HortScience 9:519–522

    Article  Google Scholar 

  51. Gibson DJ (1992) Vegetation-environment relationships in a Southern Mixed Hardwood forest. Castanea 57:174–189

    Google Scholar 

  52. Godfrey RK (1989) Trees, Shrubs, and Woody Vines of Northern Florida and Adjacent Georgia and Alabama. Univ. of Georgia Press, Athens

    Google Scholar 

  53. Graham A (ed) (1972) Floristics and Paleofloristics of Asia and Eastern North America. Elsevier, Amsterdam, p 278

    Google Scholar 

  54. Gray A (1846) Analogy between the flora of Japan and that of the United States. Amer J Sci Arts 2(2):135–136

    Google Scholar 

  55. Greller AM (1980) Correlation of some climatic statistics with distribution of broad-leaved forest zones in Florida, USA. Bull Torrey Botan Club 107:189–219

    Article  Google Scholar 

  56. Greller AM (1989) Correlation of warmth and temperateness with the distributional limits of zonal forests in eastern North America. Bull Torrey Botan Club 116:145–163

    Article  Google Scholar 

  57. Greller AM (2003) A review of the temperate evergreen forest zone of southeastern North America: floristic affinities and arborescent vegetation types. Bot Rev 69(3):269–299

    Article  Google Scholar 

  58. Grisebach ARH (1866) Die Vegetationsgebiete der Erde, übersichtlich zusammengestellt. Petermanns Mitteilungen 12:45–53

    Google Scholar 

  59. Harper RM (1914) Geography and vegetation of northern Florida. Fla. State Geol. Survey, 6th Ann. Rept., pp 163–437

    Google Scholar 

  60. Hart JF (1968) Loss and abandonment of cleared farm land in the eastern United States. Ann Assoc Amer Geographers 58(3):417–440

    Article  Google Scholar 

  61. Hartnett DC, Krofta DM (1989) Fifty-five years of post-fire succession in a southern mixed hardwood forest. Bull Torrey Bot Club 116:107–113

    Article  Google Scholar 

  62. Hildebrand-Vogel R (2002) Structure and dynamics of southern Chilean natural forests with special reference to the Relation of evergreen versus deciduous elements. Folia Geobotanica 37:107–128

    Article  Google Scholar 

  63. Hocker HW (1956) Certain aspects of climate as related to the distribution of Loblolly Pine (Pinus taeda). Ecology 37:824–834

    Article  Google Scholar 

  64. Holdridge LR (1959) A simple method for determining potential evapotranspiration from temperature data. Science 130:572

    Article  Google Scholar 

  65. Hsieh C-F, Chao W-C, Liao C-C, Yang K-C, Hsieh T-H (1997) Floristic composition of the evergreen broad-leaved forests of Taiwan. Nat Hist Res special issue no. 4:1–16.

    Google Scholar 

  66. Hübl E (1988) Lorbeerwälder und Hartlaubwälder (Ostasien, Mediterraneis und Makaronesien). Düsseldorfer Geobot Kolloq 5:3–26

    Google Scholar 

  67. Hunt C (1974) Natural Regions of the United States and Canada. W. H., Freeman, San Francisco

    Google Scholar 

  68. Hunt DM (1994) Morphology and Ecology of Quercus Series Laurifoliae, Marilandicae and Nigrae. In: Miyawaki A, et al. (eds) Vegetation in Eastern North America, pp. 99–120. Tokyo University Press

    Google Scholar 

  69. Isogai T, Okutomi K (1991) Dynamics of an evergreen oak forest in the Kannami virgin forest, central Japan. Jap J Ecol 41:209–223 (in Japanese)

    Google Scholar 

  70. Karl TR, Melillo JM, Peterson TC (2009) Global Climate Change Impacts in the United States. Cambridge University Press

    Google Scholar 

  71. Kira T (1945) 農業地理学の基礎としての東亜の新気候区分 (Nōgyō Chirigaku-no Kiso to shite no Tō-A no Shin Kikō Kubun) [A new classification of climate in eastern Asia, as a basis for agricultural geography]. Horticult. Inst., Kyoto University, 23 pp (in Japanese)

    Google Scholar 

  72. Kira T (1949) 日本の森林帯 (Nippon-no shinrin-tai)[Forest zones in Japan]. Ringyō Kaisetsu, 17:105–141. Nippon Ringyō Gijutsu Kyōkai, Tōkyō (in Japanese)

    Google Scholar 

  73. Kira T (1969) 照葉樹林とは何か[What is a laurel forest?] In: 照葉樹林文化 (Shōyō jurin bunka) [Culture in the Laurel Forest Zone] (Sh. Ueyama, ed.), pp 43–84. Chūōkōron-Shinsha, Tokyo. (In Japanese)

    Google Scholar 

  74. Kira T (1977) A Climatological Interpretation of Japanese Vegetation Zones. In: Miyawaki A (ed) Vegetation Science and Environmental Protection. Maruzen, Tokyo, pp 21–30

    Google Scholar 

  75. Kira T (1991) Forest ecosystems of East and Southeast Asia in a global perspective. Ecol Research 6:185–200

    Article  Google Scholar 

  76. Köppen W (1931) Grundriss der Klimakunde. Walter de Gruyter, Berlin

    Book  Google Scholar 

  77. Kolstad EW, Breiteig T, Scaife AA (2010) The association between stratospheric weak polar vortex events and cold-air outbreaks in the Northern Hemisphere. Q. J. Royal Meteorol. Soc. 136:886–893

    Article  Google Scholar 

  78. Komarek EV (1968) Lightning and lightning fires as ecological forces. In: Procs. 9th annual tall timbers fire ecology conference, vol 9, pp 169–197

    Google Scholar 

  79. Komarek EV (1972) Ancient fires. In: Procs. 12th annual tall timbers fire ecology conference, pp 219–240

    Google Scholar 

  80. Küchler AW (1964) Manual for map “The Potential Natural Vegetation of the Conterminous United States.” American Geographical Society, special research publ. no. 36, New York

    Google Scholar 

  81. Kurz H (1944) Secondary forest succession in the Tallahassee Red Hills. Proc Fla Acad Sci 7(2–3):59–100

    Google Scholar 

  82. Kurz H, Godfrey RK (1982) Trees of Northern Florida. Univ, Florida Press, Gainesville, p 311

    Google Scholar 

  83. Kwit C, Schwartz MW, Platt WJ, Geaghan JP (1998) The distribution of tree species in steepheads of the Apalachicola River Bluffs. Florida J Torrey Bot Soc 125:309–318

    Article  Google Scholar 

  84. Laessle AM (1942) The plant communities of the Welaka Area. Biol Sci Ser (Univ. Fla. Presses) 4(1):1–141

    Google Scholar 

  85. Laessle AM, Monk CD (1961) Some live oak forests of northeastern Florida. Quart J Fla Acad Sci 234:39–55

    Google Scholar 

  86. Lafon ChW (2010) Fire in the American South: vegetation impacts, history, and climatic relations. Geogr Compass 4(8):919–944

    Article  Google Scholar 

  87. Lakela O, Wunderlin RP (1980) Trees of Central Florida. Banyan Books, Miami, p 208

    Google Scholar 

  88. Larcher W (1976) (1973). Ökologie der Pflanzen. Eugen Ulmer, Stuttgart, 320 pp (2nd ed.: 322pp)

    Google Scholar 

  89. Lenihan JM, Neilson RP (1993) A rule-based vegetation formation model for Canada. J Biogeogr 20:615–628

    Article  Google Scholar 

  90. Li WH, Li LF, Fu R, Deng Y, Wang H (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J Climate 24:1499–1506

    Article  Google Scholar 

  91. Lieth H (1975) Primary production of the major vegetation units of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere, pp 203–215

    Google Scholar 

  92. Loehle C (1998) Height growth-rate tradeoffs determine northern and southern range limits for trees. J Biogeography 25:735–742

    Article  Google Scholar 

  93. Long RW, Lakela O (1971) Flora of Tropical Florida. Univ, Miami Press, p 962

    Google Scholar 

  94. Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot 25:168–184

    Article  CAS  Google Scholar 

  95. Loveless AR (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann Bot 26:551–561

    Article  Google Scholar 

  96. Martin WH, Boyce SG (1993) Introduction: the Southeastern Setting. In: Martin WH et al (eds) Biodiversity of the Southeastern United States. Wiley, New York, pp 1–46

    Google Scholar 

  97. Meeker DO, Merkel DL (1984) Climax theories and a recommendation for vegetation classification – a viewpoint. J Range Manag 37(5):427–430

    Article  Google Scholar 

  98. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  99. Meentemeyer V (1984) The geography of organic decomposition rates. Annals Assn Amer Geogr 74(4):551–560

    Article  Google Scholar 

  100. Miyawaki A (1968) 関東地方の潜在自然植生と代償植生との考察 [The current potential natural vegetation and its substitute communities on the Kanto Plain (central Japan): First Report]. In: Yoshioka (ed) Annual Report JIBP-CT(P) for Fiscal Year 1967, pp 89–95 (in Japanese). Sendai

    Google Scholar 

  101. Miyawaki A (1984) A vegetation-ecological view of the Japanese Archipelago. Bull Inst Env Sci Technol. Yokohama Nat. Univ. 11:85–101

    Google Scholar 

  102. Miyawaki A (ed) (1989) 日本植生誌 (Nihon Shokusei-Shi) [Vegetation of Japan], vol. 10: Okinawa and Ogasawara. 676pp, + 123 tables (separate volume), and 5 maps. Shibundo, Tokyo (in Japanese, with English summary)

    Google Scholar 

  103. Miyawaki A, Fujiwara K (1983) Evergreen broad-leaved forests and secondary forests in the Boso Peninsula (SE parts of Kanto region). Bull Inst Envir Sci Technol. Yokohama Natl. Univ. 9:63–76

    Google Scholar 

  104. Miyawaki A, Fujiwara K, Box EO (1987) Toward harmonious green urban environments in Japan and other countries. Bull Inst Environm Sci Technol. Yokohama Nat. Univ. 14:67–82

    Google Scholar 

  105. Miyawaki A, Iwatsuki K, Grandtner MM (eds) (1994) Vegetation in Eastern North America. Univ. of Tokyo Press, Tokyo, p 515

    Google Scholar 

  106. Miyawaki A, Suzuki K, Fujiwara K (1977) Human impact on forest vegetation in Japan. Naturaliste Canad 104:97–107

    Google Scholar 

  107. Miyawaki A, Suzuki K (1980) Natürliche und ihre sommergrünen Sekundär-Wälder in Mitteljapan. Phytocoenologia 7:492–506

    Article  Google Scholar 

  108. Monk CD (1965) Southern mixed hardwood forest of north-central Florida. Ecol Monogr 35:335–354

    Article  Google Scholar 

  109. Monk CD (1966) An ecological significance of evergreenness. Ecology 47:504–505

    Article  Google Scholar 

  110. Monk CD (1968) Successional and environmental relationships of the forest vegetation of north-central Florida. Amer Midland Naturalist 79:441–457

    Article  Google Scholar 

  111. Monk CD (1987) Sclerophylly in Quercus virginiana Mill. Castanea 52:256–261

    Google Scholar 

  112. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York, p 547

    Google Scholar 

  113. Muller CH (1961) The live oaks of the series Virentes. Amer Midland Naturalist 65:17–39

    Article  Google Scholar 

  114. Myers RL (1985) Fire and dynamic relationship between Florida sandhill and sand-pine scrub vegetation. Bull Torrey Bot Club 112:241–252

    Article  Google Scholar 

  115. Myers RL, Ewel JJ (1990) Ecosystems of Florida. Univ, Central Florida Press, Orlando, p 765

    Google Scholar 

  116. Nitta I, Ohsawa M (1997) Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-leaved trees near their northern limit in central Japan. Plant Ecol 130(1):71–88

    Article  Google Scholar 

  117. Noss RF (2018) Fire Ecology of Florida. University Presses of Florida, 336pp

    Google Scholar 

  118. Numata M (ed) (1974) The Flora and Vegetation of Japan. Elsevier, Kodansha (Tokyo), p 294

    Google Scholar 

  119. Numata M, Miyawaki A, Itow D (1972) Natural and semi-natural vegetation in Japan. Blumea 20:435–481 (with 26 photos, veg. maps)

    Google Scholar 

  120. Orme AR (2002) The Physical Geography of North America. Oxford Univ. Press, New York, p 551

    Google Scholar 

  121. Ovington JD (ed) (1983) Temperate Broad-Leaved Evergreen Forests. “Ecosystems of the World”, vol 10. Elsevier, Amsterdam, p 241

    Google Scholar 

  122. Penfound WT (1952) Southern Swamps and Marshes. Botan. Review 18:413–446

    Google Scholar 

  123. Pessin LJ (1933) Forest associations in the uplands of the lower Gulf Coastal Plain (longleaf pine belt). Ecol. 14:1–14

    Article  Google Scholar 

  124. Poorter L (2009) Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol 181:890–900

    Article  PubMed  Google Scholar 

  125. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties, and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  126. Quarterman E, Keever Ch (1962) Southern mixed hardwood forest: climax in the southeastern coastal plain. USA. Ecol Monogr 32:167–185

    Article  Google Scholar 

  127. Ramankutty N, Heller E, Rhemtulla J (2010) Prevailing myths about agricultural abandonment and forest regrowth in the United States. Annals Assoc Amer Geographers 100(3):502–512

    Article  Google Scholar 

  128. Rübel EF (1930) Pflanzengesellschaften der Erde. Huber, Berlin

    Google Scholar 

  129. Sakai A (1968a) Frost damage on basal stems in young trees. Contrib Inst Low Temp Sci Hokkaido Univ, series B, 15:1

    Google Scholar 

  130. Sakai A (1968b) Mechanism of desiccation damage of forest trees in winter. Contrib Inst Low Temp Sci Hokkaido Univ Ser B, 15:15

    Google Scholar 

  131. Sakai A (1971) Freezing resistance of relicts from the Arcto-Tertiary flora. New Phytol 70:1199–1205

    Article  Google Scholar 

  132. Sakai A, Weiser CJ (1973) Freezing resistance of trees in North America with reference to tree regions. Ecology 54(1):118–126

    Article  Google Scholar 

  133. Sakai A, Paton DM, Wardle P (1981) Freezing resistance of trees of the South Temperate zone, especially subalpine species of Australasia. Ecology 62:563–570

    Article  Google Scholar 

  134. Sakai A, Larcher W (1987) Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Springer, Berlin, p 321

    Book  Google Scholar 

  135. Sargent ChS (1880) Catalogue of the Forest Trees of North America. US Govt. Printing Ofc, Washington

    Book  Google Scholar 

  136. Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Gustav-Fischer-Verlag, Jena (English transl. 1903, by W. R. Fisher, Oxford Press; 3rd edition with F. C. von Faber 1935).

    Google Scholar 

  137. Schmithüsen J (ed) (1976) Atlas zur Biogeographie. Meyers Grosser Physischer Weltatlas, vol 3. Bibliographisches Institut, Mannheim/Vienna/ Zürich, p 80

    Google Scholar 

  138. Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, et al. (eds) Encyclopedia of plant Physiology, vol. 12B, pp 616–676

    Google Scholar 

  139. Shantz HL, Zon R (1924) Natural Vegetation. Part 1, section E, in Atlas of American Agriculture. US Dept. Agriculture, Washington

    Google Scholar 

  140. Sharitz RR, Gibbons JW (1982) The Ecology of Southeastern Shrubs Bogs (Pocosins) and Carolina Bays: A Community Profile. Publ. no. FWS/OBS-82/04. US Fish and Wildlife Service, Div. of Biological Services, Washington, 93 pp.

    Google Scholar 

  141. Smith WB, Miles PD, Vissage, JS, Pugh SA (2004) Forest Resources of the United States. In: General Technical Report NC-241, 146. US Forest Service, North Central Research Station, St. Paul

    Google Scholar 

  142. Song Y-C (1988) [Evergreen Broad-Leaved Forest Ecological Research]. Southwest Normal University Press, China, 696 pp (in Chinese)

    Google Scholar 

  143. Song Y-C (1995) On the global position of the evergreen broad-leaved forests of China. In: Box EO, et al (eds) Vegetation Science in Forestry. Handbook of Vegetation Science, 12/1, pp. 69–84. Kluwer, Dordrecht

    Google Scholar 

  144. Song Y-C (2013) [Evergreen Broad-Leaved Forests in China], vol 2, 788pp (in Chinese, with English summary) + 558 pp (tables). Science Press, Beijing

    Google Scholar 

  145. Song Y-C, Xu G-S (2003) A scheme of vegetation classification of Taiwan. Acta Botanica Sinica 45(8):883–895

    Google Scholar 

  146. Spicer BE (1969) Characteristics of the loess deposits and soils in East and West Feliciana Parishes, Louisiana. MS thesis, Louisiana State University, Baton Rouge, 69 pp

    Google Scholar 

  147. Stalter R, Dial S, Laessle A (1981) Some ecological observations of the arborescent vegetation in Highlands Hammock State Park, Florida. Castanea 46:30–35

    Google Scholar 

  148. Svoma BM, et al (2013) Expansion of the northern-hemispheresubtropical high-pressure belt: trends and linkages to precipitation and drought. Phys Geogr 34(3):174–187

    Google Scholar 

  149. Tagawa H (1997) World-wide distribution of evergreen lucidophyll oak-laurel forests. Tropics (Kyōto) 6(4):295–316

    Google Scholar 

  150. Taneda H, Tateno M (2005) Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter. Tree Physiol 25:299–306

    Google Scholar 

  151. Tharp BC (1939) The Vegetation of Texas. Anson Jones Press, Houston

    Google Scholar 

  152. Thyroff EC, Burney OW, Mickelbart MV, Jacobs DF (2019) Unraveling shade tolerance and plasticity of semi-evergreen oaks: insights from maritime-forest live oak restoration. Frontiers Plant Sci 10:1–11

    Google Scholar 

  153. Trelease W (1917) Naming American hybrid oaks. Procs Amer Phil Soc 56:44–52

    Google Scholar 

  154. Trelease W (1924) The American oaks. Mem Natl Acad Sci 20:1–255

    Google Scholar 

  155. US Geological Survey 1970. National Atlas of the United States of America. Washington

    Google Scholar 

  156. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Ann Rev Ecol Syst 39:237–257

    Google Scholar 

  157. Van Auken OW, Ford AL, Dougherty SL, Stein AG (1980) Woody vegetation of upland plant communities in the southern Edwards Plateau. Texas J Sci 32:23–35

    Google Scholar 

  158. Veno PA (1976) Successional relationships in five Florida plant communities. Ecology 57:498–508

    Google Scholar 

  159. Walter H (1954) Klimax Und Zonale Vegetation. Angewandte Pflanzensoziologie 1:144–150

    Google Scholar 

  160. Walter H (1968) Die Vegetation der Erde in öko-physiologischer Betrachtung. Vol. II: Die gemäβigten und arktischen Zonen. VEB Gustav-Fischer-Verlag, Jena, 1002 pp

    Google Scholar 

  161. Walter H (1977) Vegetationszonen und Klima, 3rd edn. Eugen-Ulmer-Verlag, Stuttgart, p 309

    Google Scholar 

  162. Walter H (1985) Vegetation of the Earth, 3rd edn. Springer, Berlin/New York, p 318

    Google Scholar 

  163. Wang H, Fu R, Kumar A, Li WH (2010) Intensification of summer rainfall variability in the southeastern United States during recent decades. J Hydrometeorol 11(4):1007–1018. 1010.1175/2010

    Google Scholar 

  164. Wardle P (1971) An explanation for alpine timberline. NZ J Botany 9:371–402

    Google Scholar 

  165. Watts WA (1980) The late Quaternary vegetation history of the southeastern United States. Ann Rev Ecol Syst 11:387–409

    Google Scholar 

  166. Watts WA (1983) Vegetational history of the southeastern United States. In: H. E. Wright jr., (ed) Late Quaternary Environments of the United States. University of Minnesota Press, Minneapolis, pp 294–310

    Google Scholar 

  167. Wells BW (1928) Plant communities of the coastal plain of North Carolina and their successional relations. Ecology 9:230–242

    Google Scholar 

  168. Wells BW (1942) Ecological problems of the southeastern United States coastal plain. Bot Review 8:533–561

    Google Scholar 

  169. Wharton CH (1978) The Natural Environments of Georgia. Georgia Dept. Nat, Resources, Atlanta, p 228

    Google Scholar 

  170. White DA (1983) Plant communities of the lower Pearl River basin. Louisiana Amer Midl Naturalist 110:381–396

    Google Scholar 

  171. White DA (1987) An American beech-dominated original growth forest in southeast Louisiana. Bull Torrey Botan Club 114:127–133

    Google Scholar 

  172. Wood VS (1981) Live Oaking. Northeastern University Press, Boston, Southern Timber for Tall Ships

    Google Scholar 

  173. Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, 174 pp

    Google Scholar 

  174. Wu Z-Y, Committee (eds.) (1980, 1995) Zhongguo Zhibei [Vegetation of China]. Science Press, Beijing, 1375 pp + 339 B/W photos (in Chinese, Latin-Chinese species lists; no index)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Composition and Structure of the Main Evergreen Broad-Leaved Forest Types

Appendix: Composition and Structure of the Main Evergreen Broad-Leaved Forest Types

The six main types of evergreen broad-leaved forests in the southeastern USA, as identified in the main text, are described here by means of Braun-Blanquet relevés, which show species composition and abundance in individual forest layers and thus the physical structure of the forests themselves. Each of the following six tables (identified as Relevé Tables A.1A.6, as opposed to the Tables in the main text) includes three relevés, from different areas. Each relevé has four columns, for the T1, T2, S and H layers of the respective forests. The numbers in these layer columns represent species cover and sociability on the normal Braun-Blanquet scale of 1-5, with a plus sign (+) for sporadic occurrence.

Table A.1 Laurophyll “Bay” forest examples from the Southeastern US coastal plain
Table A.2 Beech-Magnolia forest examples from the US Southeastern coastal plain
Table A.3 Live Oak-Magnolia forest examples from the Southeastern US coastal plain.
Table A.4 Upland Oak forest examples from the Southeastern US coastal plain.
Table A.5 Oak-Palm forest examples from the Southeastern US coastal plain
Table A.6 Bottomland evergreen oak forests on the Southeastern US coastal plain

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Box, E.O., Fujiwara, K. (2021). Constraints on Evergreen Broad-Leaved Forests in the Southeastern United States. In: Pedrotti, F., Box, E.O. (eds) Tools for Landscape-Scale Geobotany and Conservation. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-74950-7_17

Download citation

Publish with us

Policies and ethics