Skip to main content

Beyond Bowen’s Specification Property

  • Conference paper
  • First Online:
Thermodynamic Formalism

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2290))

Abstract

A classical result in thermodynamic formalism is that for uniformly hyperbolic systems, every Hölder continuous potential has a unique equilibrium state. One proof of this fact is due to Rufus Bowen and uses the fact that such systems satisfy expansivity and specification properties. In these notes, we survey recent progress that uses generalizations of these properties to extend Bowen’s arguments beyond uniform hyperbolicity, including applications to partially hyperbolic systems and geodesic flows beyond negative curvature. We include a new criterion for uniqueness of equilibrium states for partially hyperbolic systems with 1-dimensional center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, this holds if X = M is compact and f is a transitive Anosov diffeomorphism.

  2. 2.

    The terminology in the literature for these different variants (weak specification, almost specification, almost weak specification, transitive orbit gluing, etc.) is not always consistent, and we make no attempt to survey or standardize it here. To keep our terminology as simple as possible, we just use the word specification for the version of the definition which is our main focus. In places where a different variant is considered, we take care to emphasize this.

  3. 3.

    For other purposes, and especially in the absence of any expansivity property, the difference between ≤ τ and = τ can be quite substantial, see for example [54, 55].

  4. 4.

    The notes at https://vaughnclimenhaga.wordpress.com/2020/06/23/specification-and-the-measure-of-maximal-entropy/ give a slightly more detailed version of this proof.

  5. 5.

    We will encounter this general principle multiple times: many of our proofs rely on obtaining uniform bounds (away from 0 and ) for quantities that a priori can grow or decay subexponentially.

  6. 6.

    This requires ergodicity of μ; one can also give a short argument directly from the definition of h μ(σ) that does not need ergodicity.

  7. 7.

    Since \(\mathcal {G}^M\) corresponds to a collection of orbit segments rather than a subset of the space, the most accurate analogy might be to think of \(\mathcal {G}^M\) as corresponding to orbit segments that start and end in a given regular level set.

  8. 8.

    The constant K M increases exponentially with the transition time in the specification property for \(\mathcal {G}^M\), so we do not expect any explicit relationship between M and K M in general. Examples of S-gap shifts (see Remark 1.9) can be easily constructed to make the constants \(K_M^{-1}\) decay fast.

  9. 9.

    Formally, I a = {x ∈ [0,  1) : ⌊βx⌋ = a}, so \(I_a = [\frac a\beta , 1)\) if a = ⌈β⌉− 1, and \([\frac a\beta , \frac {a+1}\beta )\) otherwise.

  10. 10.

    In the symbolic setting, this corresponds to X being a subshift of finite type.

  11. 11.

    The statements in [68] used 𝜖 ≥ 28δ but this must be corrected to 𝜖 > 40δ; see [2, §5.7].

  12. 12.

    See [68, Proposition 2.7] for a detailed proof that h top(X, f, ρ) = h top(X, f) in this case.

  13. 13.

    Use specification to get \(y_n \in f^n(B_n(x,\delta )) \cap f^{-k_n}(B_n(q,\delta ))\) for 0 ≤ k n ≤ τ, choose k such that k n = k for infinitely many values of n, and let y be a limit point of the corresponding y n.

  14. 14.

    Note that \(f^{-\tau }(W^{ss}_\delta (q))\) intersects a local leaf of W cu in at most finitely many points, and thus intersects at most finitely many of the corresponding local leaves of W u; however, there are uncountably many of these corresponding to points that never enter B(q, ρ).

  15. 15.

    There is a clear analogy between what we are doing here and the notion of hyperbolic time introduced by Alves [81], and developed by Alves, Bonatti and Viana [82].

  16. 16.

    Observe that this is impossible if φ does not satisfy the Bowen property.

  17. 17.

    Another specification-based proof of uniqueness of the MME on surfaces without focal points was given by Gelfert and Ruggiero [89].

  18. 18.

    We note that the original formulation of expansivity for flows by Bowen and Walters [100] allows reparametrizations, which suggests that one might consider a potentially larger set in place of Γ𝜖 for expansive flows. The main motivation for allowing reparametrizations is to give a definition that is preserved under orbit equivalence. However, this is not relevant for our purposes. In our setup, the natural notion of expansivity would be to ask that there exists 𝜖 so that \(\mathrm {NE}(\epsilon , \mathcal {F})= \emptyset \). This definition is sufficient for the uniqueness results, and strictly weaker than Bowen–Walters expansivity, although it is not an invariant under orbit equivalence. See the discussion of kinematic expansivity in [37].

  19. 19.

    We mention that μ L(Reg) > 0 and that μ L|Reg is known to be ergodic. Ergodicity of μ L, which is a major open problem, is thus equivalent to the question of whether μ L(Sing) = 0.

  20. 20.

    Here, we are following a notation convention of Katok: when we say a geodesic, we mean oriented geodesic, and we are considering γ as a periodic orbit living in T 1 M.

  21. 21.

    For manifolds M with Dim(M) ≥ 2, we define λ: T 1 M → [0, ) as follows. Let H s, H u be the stable and unstable horospheres for v. Let \(\mathcal {U}^s_v \colon T_{\pi v} H^s \to T_{\pi v} H^s\) be the symmetric linear operator defined by \(\mathcal {U}(v)=\nabla _vN\), where N is the field of unit vectors normal to H on the same side as v. This determines the second fundamental form of the stable horosphere H s. We define \(\mathcal {U}^u_v \colon T_{\pi v} H^u \to T_{\pi v} H^u\) analogously. Then \(\mathcal {U}_v^u\) and \(\mathcal {U}_v^s\) depend continuously on v, \(\mathcal {U}^u\) is positive semidefinite, \(\mathcal {U}^s\) is negative semidefinite, and \(\mathcal {U}^u_{-v}=-\mathcal {U}^s_v\). For v ∈ T 1 M, let λ u(v) be the minimum eigenvalue of \(\mathcal {U}^u_v\) and let λ s(v) = λ u(−v). Let \(\lambda (v) = \min ( \lambda ^u(v), \lambda ^s(v))\).

    The functions λ u, λ s, and λ are continuous since the map \(v\mapsto \mathcal {U}^{u,s}_v\) is continuous, and we have λ u, s ≥ 0. When M is a surface, the quantities λ u, s(v) are just the curvatures at πv of the stable and unstable horocycles, and we recover the definition of λ stated above.

  22. 22.

    This allows us to use indicator functions of open sets, which is helpful in some applications.

  23. 23.

    We could also define the class of one-sided λ-decompositions by taking the longest initial segment in \(\mathcal {B}(\eta )\), declaring what is left over to be good, and setting \(\mathcal {S}=\emptyset \), or conversely by putting \(\mathcal {S} = \mathcal {B}(\eta )\) and \(\mathcal {P}=\emptyset \). This formalism is defined in [109]: the decompositions in Sect. 1.3.4.2 are examples of one-sided λ-decompositions.

  24. 24.

    In fact one can improve this estimate, but the formula is more complicated [20].

  25. 25.

    Formally, one needs to take a finite index subgroup of π 1(M) that avoids all non-identity elements corresponding to a large ball in \(\widetilde {M}\); this is possible because π 1(M) is residually finite.

  26. 26.

    This can also be formulated in terms of the Pinsker σ-algebra for μ, which can be thought of as the biggest σ-algebra with entropy 0: the measure μ has the K-property if and only if the Pinsker σ-algebra for μ is trivial.

  27. 27.

    In dimension 2, it is in fact an open problem whether Sing can contain non-periodic orbits [124], but this does not affect the argument that h(Sing) = 0.

  28. 28.

    The idea is that we want to split a word y [1,nN] into αN subwords and perform surgeries near the points where it was split; these are the “on” points in A.

  29. 29.

    Each such window determined by the set J has length some multiple of n. The surgery procedure is to remove the last t + 2τ symbols from each window and replace with a word of the form v 1 wv 2 where the words v j are provided by the specification property to ensure that this procedure creates a word in \(\mathcal {L}_{nN}(X)\).

  30. 30.

    https://vaughnclimenhaga.wordpress.com/2017/01/26/entropy-bounds-for-equilibrium-states/.

References

  1. V. Climenhaga, D.J. Thompson, Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors. Israel J. Math. 192(2), 785–817 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Climenhaga, D.J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Adv. Math. 303, 745–799 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Burns, V. Climenhaga, T. Fisher, D.J. Thompson, Unique equilibrium states for geodesic flows in nonpositive curvature. Geom. Funct. Anal. 28(5), 1209–1259 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bowen, Periodic points and measures for Axiom A diffeomorphisms. Trans. Am. Math. Soc. 154, 377–397 (1971)

    MathSciNet  MATH  Google Scholar 

  5. R. Bowen, Some systems with unique equilibrium states. Math. Syst. Theory 8(3), 193–202 1974/1975

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Climenhaga, Specification and towers in shift spaces. Commun. Math. Phys. 364(2), 441–504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Matson, E. Sattler, S-limited shifts. Real Anal. Exchange 43(2), 393–415 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Climenhaga, R. Pavlov, One-sided almost specification and intrinsic ergodicity. Ergodic Theory Dynam. Syst. 39(9), 2456–2480 2019

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Shinoda, K. Yamamoto, Intrinsic ergodicity for factors of (−β)-shifts. Nonlinearity 33(1), 598–609 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Climenhaga, D.J. Thompson, Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. 87(2), 401–427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Climenhaga, V. Cyr, Positive entropy equilibrium states. Israel J. Math. 232(2), 899–920 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Climenhaga, D.J. Thompson, K. Yamamoto, Large deviations for systems with non-uniform structure. Trans. Am. Math. Soc. 369(6), 4167–4192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Carapezza, M. Lpez, D. Robertson, Unique equilibrium states for some intermediate beta transformations. Stochastics Dyn. (to appear). https://doi.org/10.1142/S0219493721500350

  14. V. Climenhaga, T. Fisher, D.J. Thompson, Unique equilibrium states for Bonatti-Viana diffeomorphisms. Nonlinearity 31(6), 2532–2570 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Climenhaga, T. Fisher, D.J. Thompson, Equilibrium states for Mañé diffeomorphisms. Ergodic Theory Dynam. Syst. 39(9), 2433–2455 (2019)

    Article  MATH  Google Scholar 

  16. T. Wang, Unique equilibrium states, large deviations and Lyapunov spectra for the Katok map. Ergodic Theory Dynam. Syst. 41(7), 2182–2219 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Fisher, K. Oliveira, Equilibrium states for certain partially hyperbolic attractors. Nonlinearity 33, 3409–3423 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Chen, L.-Y. Kao, K. Park, Unique equilibrium states for geodesic flows over surfaces without focal points. Nonlinearity 33, 1118–1155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Chen, L.-Y. Kao, K. Park, Properties of equilibrium states for geodesic flows over manifolds without focal points. Adv. Math. 380, 107564 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Climenhaga, G. Knieper, K. War, Uniqueness of the measure of maximal entropy for geodesic flows on certain manifolds without conjugate points. Adv. Math. 376, 107452 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Constantine, J.-F. Lafont, D.J. Thompson, The weak specification property for geodesic flows on CAT(−1) spaces. Groups Geom. Dyn. 14(1), 297–336 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Sun, Denseness of intermediate pressures for systems with the Climenhaga-Thompson structures. J. Math. Anal. Appl. 487, 124027 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Pavlov, On intrinsic ergodicity and weakenings of the specification property. Adv. Math. 295, 250–270 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Pavlov, On controlled specification and uniqueness of the equilibrium state in expansive systems. Nonlinearity 32(7), 2441–2466 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. L.-S. Young, Large deviations in dynamical systems. Trans. Am. Math. Soc. 318(2), 525–543 (1990)

    MathSciNet  MATH  Google Scholar 

  26. F. Takens, E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets. Ergodic Theory Dynam. Syst. 23(1), 317–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. C.-E. Pfister, W.G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts. Nonlinearity 18(1), 237–261 (2005)

    Google Scholar 

  28. C.-E. Pfister, W.G. Sullivan, On the topological entropy of saturated sets. Ergodic Theory Dynam. Syst. 27(3), 929–956 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Varandas, Non-uniform specification and large deviations for weak Gibbs measures. J. Stat. Phys. 146(2), 330–358 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Quas, T. Soo, Ergodic universality of some topological dynamical systems. Trans. Am. Math. Soc. 368(6), 4137–4170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Bomfim, P. Varandas, Multifractal analysis for weak Gibbs measures: from large deviations to irregular sets. Ergodic Theory Dynam. Syst. 37(1), 79–102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Yamamoto, On the weaker forms of the specification property and their applications. Proc. Am. Math. Soc. 137(11), 3807–3814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Kwietniak, M. Ła̧cka, P. Oprocha, A panorama of specification-like properties and their consequences, in Dynamics and Numbers. Contemporary Mathematics, vol. 669. (American Mathematical Society, Providence, 2016), pp. 155–186

    Google Scholar 

  34. F. Paulin, M. Pollicott, B. Schapira, Equilibrium states in negative curvature. Astérisque 373, (2015)

    Google Scholar 

  35. V. Climenhaga, Y. Pesin, Building thermodynamics for non-uniformly hyperbolic maps. Arnold Math. J. 3(1), 37–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Buzzi, S. Crovisier, O. Sarig, Measures of maximal entropy for surface diffeomorphisms (2018, preprint). arXiv:1811.02240

    Google Scholar 

  37. T. Fisher, B. Hasselblatt, Hyperbolic Flows. Zurich Lectures in Advanced Mathematics, vol. 25 (European Mathematical Society Publishing House, Zürich, 2019), p. 737

    Google Scholar 

  38. V. Climenhaga, Y. Pesin, A. Zelerowicz, Equilibrium states in dynamical systems via geometric measure theory. Bull. Am. Math. Soc. 56(4), 569–610 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Climenhaga, SRB and equilibrium measures via dimension theory. A Vision for Dynamics – The Legacy of Anatole Katok (Cambridge University Press, Cambridge, to appear). arXiv:2009.09260

    Google Scholar 

  40. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470 (Springer, Berlin, 2008)

    Google Scholar 

  41. W. Parry, M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990)

    Google Scholar 

  42. G. Keller, Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42 (Cambridge University Press, Cambridge)

    Google Scholar 

  43. C. Beck, F. Schlögl, Thermodynamics of Chaotic Systems. Cambridge Nonlinear Science Series, vol. 4 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  44. V. Baladi, Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, vol. 16 (World Scientific, River Edge, 2000)

    Google Scholar 

  45. V. Baladi, The magnet and the butterfly: thermodynamic formalism and the ergodic theory of chaotic dynamics, in Development of Mathematics 1950–2000 (Birkhäuser, Basel, 2000), pp. 97–133

    Google Scholar 

  46. L.-S. Young, What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5–6), 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Bonatti, L.J. Díaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity. Encyclopaedia of Mathematical Sciences, vol. 102 (Springer, Berlin, 2005)

    Google Scholar 

  48. J.-R. Chazottes, Fluctuations of observables in dynamical systems: from limit theorems to concentration inequalities, in Nonlinear Dynamics New Directions. Nonlinear System Complexity, vol. 11 (Springer, Cham, 2015), pp. 47–85

    Google Scholar 

  49. M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics, vol. 527 (Springer, Berlin, 1976)

    Google Scholar 

  50. P. Walters, An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. (Springer, New York, 1982)

    Google Scholar 

  51. K. Petersen, Ergodic Theory. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  52. M. Viana, K. Oliveira, Foundations of Ergodic Theory. Cambridge Studies in Advanced Mathematics, vol. 151 (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  53. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), 228–249 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Bomfim, M.J. Torres, P. Varandas, Topological features of flows with the reparametrized gluing orbit property. J. Differ. Equs. 262(8), 4292–4313 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. P. Sun, Zero-entropy dynamical systems with the gluing orbit property. Adv. Math. 372, 107294 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. W. Parry, Intrinsic Markov chains. Trans. Am. Math. Soc. 112, 55–66 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  57. R.L. Adler, B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci. USA 57, 1573–1576 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  58. R.L. Adler, B. Weiss, Similarity of automorphisms of the torus. Memoirs of the American Mathematical Society, vol. 98 (American Mathematical Society, Providence, 1970)

    Google Scholar 

  59. B. Weiss, Subshifts of finite type and sofic systems. Monatsh. Math. 77, 462–474 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Bowen, Maximizing entropy for a hyperbolic flow. Math. Syst. Theory 7(4), 300–303 (1974)

    MathSciNet  MATH  Google Scholar 

  61. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar 8, 477–493 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  62. W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  63. F. Blanchard, β-expansions and symbolic dynamics. Theor. Comput. Sci. 65(2), 131–141 (1989)

    Google Scholar 

  64. J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers. Ergodic Theory Dynam. Syst. 17(3), 675–694 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  65. F. Hofbauer, β-shifts have unique maximal measure. Monatsh. Math. 85(3), 189–198 (1978)

    Google Scholar 

  66. P. Walters, Equilibrium states for β-transformations and related transformations. Math. Z. 159(1), 65–88 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Boyle, Open problems in symbolic dynamics, in Geometric and Probabilistic Structures in Dynamics. Contemporary Mathematics, vol. 469 (American Mathematical Society, Providence, 2008), pp. 69–118

    Google Scholar 

  68. V. Climenhaga, D.J. Thompson, Intrinsic ergodicity via obstruction entropies. Ergodic Theory Dynam. Syst. 34(6), 1816–1831 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Buzzi, T. Fisher, Entropic stability beyond partial hyperbolicity. J. Mod. Dyn. 7(4), 527–552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Mañé, Contributions to the stability conjecture. Topology 17(4), 383–396 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  71. R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part. Proc. Am. Math. Soc. 140(6), 1973–1985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Buzzi, T. Fisher, M. Sambarino, C. Vásquez, Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems. Ergodic Theory Dynam. Syst. 32(1), 63–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 51, 137–173 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  74. W. Cowieson, L.-S. Young, SRB measures as zero-noise limits. Ergodic Theory Dynam. Syst. 25(4), 1115–1138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. R. Bowen, Entropy-expansive maps. Trans. Am. Math. Soc. 164, 323–331 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  76. C. Bonatti, M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115, 157–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  77. N. Sumi, P. Varandas, K. Yamamoto, Partial hyperbolicity and specification. Proc. Am. Math. Soc. 144(3), 1161–1170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. J. Crisostomo, A. Tahzibi, Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity 32(2), 584–602 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  79. F. Rodriguez Hertz, M.A. Rodriguez Hertz, A. Tahzibi, R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory Dynam. Syst. 32(2), 825–839 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. E. R. Pujals, M. Sambarino, A sufficient condition for robustly minimal foliations. Ergodic Theory Dynam. Syst. 26(1), 281–289 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  81. J.F. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. École Norm. Sup. 33(1), 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  82. J.F. Alves, C. Bonatti, M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140(2), 351–398 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  83. F. Rodriguez Hertz, M.A. Rodriguez Hertz, R. Ures, A non-dynamically coherent example on 𝕋3. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1023–1032 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. R.B. Israel, Convexity in the Theory of Lattice Gases. Princeton Series in Physics (Princeton University Press, Princeton, 1979)

    Google Scholar 

  85. D. Ruelle, Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications, vol. 5. (Addison-Wesley, Reading, 1978)

    Google Scholar 

  86. J.M. Lee, Introduction to Riemannian Manifolds. Graduate Texts in Mathematics, vol. 176 (Springer, Cham, 2018)

    Google Scholar 

  87. K. Burns, M. Gidea, Differential Geometry and Topology. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, 2005)

    Google Scholar 

  88. R. Gulliver, On the variety of manifolds without conjugate points. Trans. Am. Math. Soc. 210, 185–201 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  89. K. Gelfert, R.O. Ruggiero, Geodesic flows modelled by expansive flows. Proc. Edinb. Math. Soc. 62(1), 61–95 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  90. K. Gelfert, B. Schapira, Pressures for geodesic flows of rank one manifolds. Nonlinearity 27(7), 1575–1594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  91. W. Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, With an appendix by Misha Brin, Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  92. P. Eberlein, Geodesic flows in manifolds of nonpositive curvature, in Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), Proceedings of Symposia in Pure Mathematics, vol. 69 (American Mathematical Society, Providence, 2001), pp. 525–571

    Google Scholar 

  93. P.B. Eberlein, Geometry of Nonpositively Curved Manifolds. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1996)

    Google Scholar 

  94. W. Ballmann, Nonpositively curved manifolds of higher rank. Ann. Math. 122(3), 597–609 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  95. K. Burns, R. Spatzier, On topological Tits buildings and their classification. Inst. Hautes Études Sci. Publ. Math. 65, 5–34 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  96. K. Burns, R. Spatzier, Manifolds of nonpositive curvature and their buildings. Inst. Hautes Études Sci. Publ. Math. 65, 35–59 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  97. M. Gerber, A. Wilkinson, Hölder regularity of horocycle foliations. J. Differ. Geom. 52(1), 41–72 (1999)

    Article  MATH  Google Scholar 

  98. W. Ballmann, Axial isometries of manifolds of nonpositive curvature. Math. Ann. 259(1), 131–144 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  99. G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Ann. Math. 148(1), 291–314 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  100. R. Bowen, P. Walters, Expansive one-parameter flows. J. Differ. Equs. 12, 180–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  101. R. Bowen, Periodic orbits for hyperbolic flows. Am. J. Math. 94, 1–30 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  102. E. Franco, Flows with unique equilibrium states. Am. J. Math. 99(3), 486–514 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  103. B. Call, D.J. Thompson, Equilibrium states for products of flows and the mixing properties of rank 1 geodesic flows (2019, preprint). arXiv:1906.09315

    Google Scholar 

  104. B. Call, D. Constantine, A. Erchenko, N. Sawyer, G. Work, Unique equilibrium states for geodesic flows on flat surfaces with singularities (2021). arXiv: 2101.11806

    Google Scholar 

  105. F. Liu, F. Wang, W. Wu, On the Patterson-Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete Continuous Dynam. Syst. A 40, 1517 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  106. T. Prellberg, J. Slawny, Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Stat. Phys. 66(1–2), 503–514 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  107. M. Urbański, Parabolic Cantor sets. Fund. Math. 151(3), 241–277 (1996)

    MathSciNet  MATH  Google Scholar 

  108. O.M. Sarig, Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  109. B. Call, The K-property for some unique equilibrium states in flows and homeomorphisms. J. Lond. Math. Soc. (to appear). arXiv:2007.00035

    Google Scholar 

  110. W. Ballmann, M. Brin, K. Burns, On surfaces with no conjugate points. J. Differ. Geom. 25(2), 249–273 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  111. A. Bosché, Expansive geodesic flows on compact manifolds without conjugate points. https://tel.archives-ouvertes.fr/tel-01691107

  112. T. Roblin, Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. 95, 102 (2003)

    MathSciNet  MATH  Google Scholar 

  113. D. Constantine, J.-F. Lafont, D.J. Thompson, Strong symbolic dynamics for geodesic flows on CAT(−1) spaces and other metric Anosov flows. J. Éc. Polytech. Math. 7, 201–231 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  114. A. Broise-Alamichel, J. Parkkonen, F. Paulin, Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees. Progress in Mathematics, vol. 329 (Birkhäuser/Springer, Cham, 2019)

    Google Scholar 

  115. R. Ricks, The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete Continuous Dynam. Syst. 41(2), 507–523 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  116. M. Babillot, On the mixing property for hyperbolic systems. Israel J. Math. 129, 61–76 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  117. F. Ledrappier, Y. Lima, O. Sarig, Ergodic properties of equilibrium measures for smooth three dimensional flows. Comment. Math. Helv. 91(1), 65–106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  118. D.S. Ornstein, B. Weiss, Geodesic flows are Bernoullian. Israel J. Math. 14, 184–198 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  119. D. Ornstein, B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure. Ergodic Theory Dynam. Syst. 18(2), 441–456 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  120. J.B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory. Uspehi Mat. Nauk 32(4), 55–112, 287 (1977)

    Google Scholar 

  121. N.I. Chernov, C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli. Ergodic Theory Dynam. Syst. 16(1), 19–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  122. G. Ponce, R. Varão, An Introduction to the Kolmogorov-Bernoulli Equivalence. SpringerBriefs in Mathematics (Springer, Cham, 2019)

    Google Scholar 

  123. F. Ledrappier, Mesures d’équilibre d’entropie complètement positive, in Dynamical Systems, Vol. II—Warsaw. Astérisque, vol. 50 (Soc. Math. France, 1977), pp. 251–272

    Google Scholar 

  124. K. Burns, V.S. Matveev, Open Problems and Questions About Geodesics. Ergodic Theory and Dynamical Systems (Cambridge University Press, Cambridge, 2019), pp. 1–44

    Google Scholar 

Download references

Acknowledgements

Vaughn Climenhaga is partially supported by NSF DMS-1554794. D.T. is partially supported by NSF DMS-1461163 and DMS-1954463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Climenhaga, V., Thompson, D.J. (2021). Beyond Bowen’s Specification Property. In: Pollicott, M., Vaienti, S. (eds) Thermodynamic Formalism. Lecture Notes in Mathematics, vol 2290. Springer, Cham. https://doi.org/10.1007/978-3-030-74863-0_1

Download citation

Publish with us

Policies and ethics