Skip to main content

Synthesis, Structure, Optical and Biomedical Application of Nanosized Composites Based on TiO2, Fe3O4 (Review)

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 264))

Included in the following conference series:

Abstract

Nowadays, different nature magnetite, based on nanocomposites, anatase doped by noble metal cations are widely used to create new kinds of biocompatible materials with unique physical–chemical properties. The magnetite nanoparticle coating by noble metals leads to their stabilization in corrosive biological media and effects on their electrical, magnetic, catalytic and plasmonic properties as well. In this paper, all recent studies in the field of producing hybrid composites based on nanosized particles (NPs) of different nature are shown or mentioned. The basic material preparation methods, their properties and the possible fields of materials application are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han TH, Parveen N, Shim JH, Nguyen ATN, Mahato N, Cho MH (2018) Ternary composite of polyaniline graphene and TiO2 as a bifunctional catalyst to enhance the performance of both the bioanode and cathode of a microbial fuel cell. Ind Eng Chem Res 57(19):6705–6713. https://doi.org/10.1021/acs.iecr.7b05314

    Article  Google Scholar 

  2. Jumat NA, Wai PS, Ching JJ, Basirun WJ (2017) Synthesis of polyaniline-TiO2 nanocomposites and their application in photocatalytic degradation. Polym Polym Compos 25(7):507–514. https://doi.org/10.1177/096739111702500701

    Article  Google Scholar 

  3. Brooms TJ, Otieno B, Onyango MS, Ochieng A (2017) Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline. J Environ Sci Health, Part A 53(2):99–107. https://doi.org/10.1080/10934529.2017.1377583

    Article  Google Scholar 

  4. Ghazzal MN, Kebaili H, Joseph M, Debecker DP, Eloy P, De Coninck J, Gaigneaux EM (2012) Photocatalytic degradation of Rhodamine 6G on mesoporous titania films: combined effect of texture and dye aggregation forms. Appl Catal B 115–116:276–284. https://doi.org/10.1016/j.apcatb.2011.12.016

    Article  Google Scholar 

  5. Luna AL, Dragoe D, Wang K, Beaunier P, Kowalska E, Ohtani B, Colbeau-Justin C (2017) Photocatalytic hydrogen evolution using Ni–Pd/TiO2: correlation of light absorption, charge-carrier dynamics, and quantum efficiency. J Phys Chem C 121(26):14302–14311. https://doi.org/10.1021/acs.jpcc.7b01167

    Article  Google Scholar 

  6. Zahornyi M (2017) Nanosized powders as reinforcement for photoactive composites (Overview). Powder Metall Met Ceram 3–4:130–147. https://doi.org/10.1007/s11106-017-9880-x

    Article  Google Scholar 

  7. Pankivskka YuB, Biliavska LO, Povnitsa OYu, Zagornyi MM, Ragulia AV, Kharchuk MS, Zagorodnya SD (2019) Antiadenoviral activity of titanium dioxide nanoparticles. Microbiol J (Ukraine) 81(5):73–84. https://doi.org/10.15407/microbiolj81.05.073

  8. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5(3):1360–1384. https://doi.org/10.1039/c4cy00974f

    Article  Google Scholar 

  9. Zahornyi M.M. (2018) Functional nanocomposites based of titanium dioxide. Monograph. AP Lambert Academic Publishing, pp 1–157

    Google Scholar 

  10. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Remita H (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14(5):505–511. https://doi.org/10.1038/nmat4220

    Article  ADS  Google Scholar 

  11. Zhu Y, Xu S, Yi D (2010) Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React Funct Polym 70(5):282–287. https://doi.org/10.1016/j.reactfunctpolym.2010.01.007

    Article  Google Scholar 

  12. Khalyavka T, Bondarenko M, Shcherban N, Petrik I, Melnyk A (2018) Effect of the C and S additives on structural, optical, and photocatalytic properties of TiO2. Appl Nanosci. https://doi.org/10.1007/s13204-018-0838-1

    Article  Google Scholar 

  13. Khalyavka TA, Shcherban ND, Shymanovska VV, Manuilov EV, Permyakov VV, Shcherbakov SN (2019) Cerium-doped mesoporous BaTiO3/TiO2 nanocomposites: structural, optical and photocatalytic properties. Res Chem Intermed. https://doi.org/10.1007/s11164-019-03888-z

    Article  Google Scholar 

  14. Sokolsky GV, Zahornyi MN, Lobunets TF, Tyschenko NI, Shyrokov AV, Ragulya AV, Ivanov SV, Gayuk N, Sokol’skii VE (2019) Photoelectrocatalytic degradation of amino-azodyes by titanium dioxide with surface states of Ti3+. J Chem Technol 27(2):130–139. https://doi.org/10.15421/081914

  15. Zaleska-Medynska A. (2018) Metal oxide-based photocatalysis: fundamentals and prospects for application, 1st edn. Book Elsevier, pp 1–350

    Google Scholar 

  16. Heshmatpour F, Zarrin S (2017) A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants. J Photochem Photobiol, A 346:431–443. https://doi.org/10.1016/j.jphotochem.2017.06.017

    Article  Google Scholar 

  17. Radoičić M, Ćirić-Marjanović G, Spasojević V, Ahrenkiel P, Mitrić M, Novaković T, Šaponjić Z (2017) Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Appl Catal B 213:155–166. https://doi.org/10.1016/j.apcatb.2017.05.023

    Article  Google Scholar 

  18. Gnanaprakasam A, Sivakumar VM, Thirumarimurugan M (2015) Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Ind J Mater Sci 1–16. https://doi.org/10.1155/2015/601827

  19. Burunkova YÉ, Denisyuk IY, Sem’ina SA (2013) Structural self-organization mechanism of ZnO nanoparticles in acrylate composites. J Opt Technol 80(3):187. https://doi.org/10.1364/jot.80.000187

  20. Burunkova JA, Denisyuk IY, Arefieva NN, Semina SA (2011) Influence of SiO2 nanoaddition on the self-organization via UV-polymerization of acrylate nanocomposites. Molecular Cryst Liquid Cryst 536(1). https://doi.org/10.1080/15421406.2011.538360

  21. Gerasin VA, Antipov EM, Karbushev VV, Kulichikhin VG, Karpacheva GP, Talroze RV, Kudryavtsev YV (2013) New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russ Chem Rev 82(4):303–332. https://doi.org/10.1070/rc2013v082n04abeh004322

  22. Chen H-J, Wang L, Chiu W-Y, Don T-M (2008) Synthesis of nanosized PAA/titania hybrid composites—experiment and modeling. Ceram Int 34(3):467–477. https://doi.org/10.1016/j.ceramint.2006.11.013

    Article  Google Scholar 

  23. Zhang J, Luo S, Gui L, Tang Y (1996) Poly(Methyl Methacrylate)-titania hybrid materials by sol-gel processing. MRS Proc 435. https://doi.org/10.1557/proc-435-173

  24. Sun X, Chen X, Fan G, Qu S (2010) Preparation and the optical nonlinearity of surface chemistry improved titania nanoparticles in poly(methyl methacrylate)–titania hybrid thin films. Appl Surf Sci 256(8):2620–2625. https://doi.org/10.1016/j.apsusc.2009.11.006

  25. Wang Y, Zhang D, Shi L, Li L, Zhang J (2008) Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks. Mater Chem Phys 110(2–3):463–470. https://doi.org/10.1016/j.matchemphys.2008.03.006

    Article  Google Scholar 

  26. Ren H, Koshy P, Chen W-F, Qi S, Sorrell CC (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366. https://doi.org/10.1016/j.jhazmat.2016.08.072

  27. Arora R, Srivastav A, Utam MK (2012) Polyaniline based polymeric nanocomposite containing TiO2 and SnO2 for environmental and energy applications. Int J Modern Eng Res 2:2384–2395

    Google Scholar 

  28. Volkov SV, Kovalchuk E, Ogenko V, Reshetnyak O (2008) Nanochemistry of nanosystems nanomaterials. K.: Naukova Dumka (in Russian)

    Google Scholar 

  29. Liu Z, Zhou J, Xue H, Shen L, Zang H, Chen W (2006) Polyaniline/TiO2 solar cells. Synth Met 156(9–10):721–723. https://doi.org/10.1016/j.synthmet.2006.04.001

    Article  Google Scholar 

  30. Li Q, Zhang C, Li J (2010) Photocatalysis and wave-absorbing properties of polyaniline/TiO2 microbelts composite by in situ polymerization method. Appl Surf Sci 257(3):944–948. https://doi.org/10.1016/j.apsusc.2010.07.098

  31. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Met 158(6):251–258. https://doi.org/10.1016/j.synthmet.2008.01.012

    Article  Google Scholar 

  32. Rajakani P, Vedhi C (2015) Electrocatalytic properties of polyaniline–TiO2 nanocomposites. Int J Indus Chem 6(4):247–259. https://doi.org/10.1007/s40090-015-0046-8

    Article  Google Scholar 

  33. Chaturmukha VS, Naveen CS, Rajeeva MP, Avinash BS, Jayanna HS, Lamani AR (2016) Dielectrical properties of PANI/TiO2 nanocomposites. https://doi.org/10.1063/1.4947720

  34. Zhang L, Liu P, Su Z (2006) Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stab 91(9):2213–2219. https://doi.org/10.1016/j.polymdegradstab.2006.01.002

  35. Zhang L, Wan M, Wei Y (2005) Polyaniline/TiO2 microspheres prepared by a template-free method. Synth Met 151(1):1–5. https://doi.org/10.1016/j.synthmet.2004.12.021

  36. Yatsishin MM (2011) Nanocomposite material polyaniline/TiO2. Nanostruct Mater 1:81–86

    Google Scholar 

  37. Zagorny M, Bykov I, Melnyk A, Lobunets T, Zhygotsky A, Pozniy A, Ragulya A (2014) Surface structure, spectroscopic and photocatalytic activity study of polyaniline/TiO2 nanocomposites. J Chem Chem Eng 8:118–127. https://doi.org/10.17265/1934-7375/2014.02.004

  38. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Curr Appl Phys 8(3–4):391–394. https://doi.org/10.1016/j.cap.2007.10.022

    Article  ADS  Google Scholar 

  39. Song XL, Yan CY, Huang ST, Zhang MW, Geng BY, Meng RB (2013) Synthesis of mesoporous polyaniline-TiO2 composite microspheres for gas sensing application. Adv Mater Res 750–752. https://doi.org/10.4028/www.scientific.net/amr.750-752.1098

  40. Milani Moghaddam H, Nasirian S (2014) Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions. Appl Surf Sci 317:117–124. https://doi.org/10.1016/j.apsusc.2014.08.062

  41. Choquette-Labbé M, Shewa W, Lalman J, Shanmugam S (2014) Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: integrating quantitative and qualitative factors using response surface methodology. Water 6(6):1785–1806. https://doi.org/10.3390/w6061785

    Article  Google Scholar 

  42. Harada H, Onoda A, Uematsu T, Kuwabata S, Hayashi T (2016) Photocatalytic properties of TiO2 composites immobilized with gold nanoparticle assemblies using the streptavidin-biotin interaction. Langmuir 32(25):6459–6467. https://doi.org/10.1021/acs.langmuir.6b01073

  43. Indira TK, Lakshmi PK (2010) Magnetic nanoparticles. Int J Pharm Sci Nanotechnol 3:1035–1042

    Google Scholar 

  44. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723. https://doi.org/10.1021/nl035253f

    Article  ADS  Google Scholar 

  45. Nassireslami E, Ajdarzade M (2018) Gold coated superparamagnetic iron oxide nanoparticles as effective nanoparticles to eradicate breast cancer cells via photothermal therapy. Adv Pharm Bull 2:201–209. https://doi.org/10.15171/apb.2018.024

  46. Kim DK, Mikhailova M, Toprak M, Zhang Y, Bjelke B, Kehr J, Muhammed M (2001) In-situ gold coating of superparamagnetic nanoparticles by microemulsion method. MRS Proc 704. https://doi.org/10.1557/proc-704-w6.28.1

  47. Caruntu D, Cushing BL, Caruntu G, O’Connor CJ (2005) Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem Mater 17:3398–3402. https://doi.org/10.1021/cm050280n

  48. Kinoshita T, Seino S, Mizukoshi Y, Otome Y, Nakagawa T, Okitsu K, Yamamoto TA (2005) Magnetic separation of amino acids by gold/iron-oxide composite nanoparticles synthesized by gamma-ray irradiation. J Magn Magn Mater 1:106–110. https://doi.org/10.1016/j.jmmm.2005.01.050

  49. Kawaguchi K, Jaworski J, Ishikawa Y, Sasaki T, Koshizaki N (2007) Preparation of gold/iron-oxide composite nanoparticles by a unique laser process in water. J Magn Magn Mater 310(2):2369–2371. https://doi.org/10.1016/j.jmmm.2006.11.109

  50. He QG, Wu ZH, Hu R (2011) Platinum immobilization on iron oxide nanoparticles surface under sonication. Adv Mater Res 183–185:1989–1994. https://doi.org/10.4028/www.scientific.net/amr.183-185.1989

    Google Scholar 

  51. Lo CK, Xiao D, Choi MMF (2007) Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J Mater Chem 23:2418. https://doi.org/10.1039/b617500g

  52. Oliva BL, Pradhan A, Caruntu D, O’Connor CJ, Tarr MA (2006) Formation of gold-coated magnetic nanoparticles using TiO2 as a bridging material. J Mater Res 21:1312–1316

    Google Scholar 

  53. Wang L, Luo J, Maye MM, Fan Q, Rendeng Q, Engelhard MH, Zhong C-J (2005) Iron oxide–gold core–shell nanoparticles and thin film assembly. J Mater Chem 18:1821. https://doi.org/10.1039/b501375e

  54. Lavrynenko OM, Pavlenko OYu, Shchukin YuS, Dudchenko NO, Brik AB, Antonenko TS (2020) Characteristics of nanocomposites formed on the steel surface contacting with precious metal solutions. In: Pogrebnjak AD, Bondar O (eds) Springer proceedings in physics microstructure and properties of micro- and nanoscale materials, films, and coatings (NAP 2019), Chapter 28, pp 297–306

    Google Scholar 

  55. Tamer U, Gündogdu Yu, Boyaci IH, Pekmez K (2010) Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12(4):1187–1196

    Google Scholar 

  56. Silva VAJ, Andrade PL, Silva MPC, Bustamante DA, De Los Santos Valladares L, Albino Aguiar J (2013) Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magnet Magnet Mater 343:138–143. https://doi.org/10.1016/j.jmmm.2013.04.062

  57. Hien Pham TT, Cao C, Sim SJ (2008) Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320(15):2049–2055. https://doi.org/10.1016/j.jmmm.2008.03.015

  58. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  59. Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE, O’Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31. https://doi.org/10.1006/jssc.2001.9117

    Article  ADS  Google Scholar 

  60. Nguyen-Tri P, Nguyen V, Nguyen T (2019) Biological activity and nanostructuration of Fe3O4-Ag/high density polyethylene nanocomposites. J Compos Sci 3(2):34. https://doi.org/10.3390/jcs3020034

    Article  Google Scholar 

  61. Haratifar E al din, Shahverdi HR, Shakibaie M, Mollazadeh Moghaddam K, Amini M, Montazeri H, Shahverdi AR (2009) Semi-biosynthesis of magnetite-gold composite nanoparticles using an ethanol extract of Eucalyptus camaldulensis and study of the surface chemistry. J Nanomater 1–5. https://doi.org/10.1155/2009/962021

Download references

Acknowledgements

This work was supported by the nano-program “The development of photocatalytic nanocomposites for a viruses inactivation in the air” (№ 40/20-H).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zahornyi, M.M., Lavrynenko, O.M., Pavlenko, O.Y., Tyschenko, N.I., Skoryk, M.A., Kornienko, O.A. (2021). Synthesis, Structure, Optical and Biomedical Application of Nanosized Composites Based on TiO2, Fe3O4 (Review). In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-74800-5_10

Download citation

Publish with us

Policies and ethics