Skip to main content

On the Crystallization Ability of 80GeSe2-20Ga2Se3 Glasses

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 263))

Included in the following conference series:

  • 324 Accesses

Abstract

Peculiarities of crystallization behavior of the 80GeSe2-20Ga2Se3 chalcogenide glasses caused by thermal treatment at 380 °C for 10, 25, 50, 80 and 100 h were studied using X-ray diffraction method. It is shown that crystallization processes indicate on the formation of GeGa4Se8, Ga2Se3 and GeSe2 crystallizes in nanoparticle form in the inner structure of the studied glasses. Crystallites are formed in different modifications: GeGa4Se phase of low-temperature and high-temperature modifications as well as α, γ-modification of Ga2Se3 phases. The most significant changes in the 80GeSe2-20Ga2Se3 glasses occur after thermal treatment for 25 and 50 h. Following crystallization for 80 and 100 h does not reflect the increase in intensity which indicate the further formation of phases in the inner structure of glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kokenyesi S (2006) Amorphous chalcogenide nano-multilayers: research and development. J Optoelectron Adv Mater 8(6):2093–2096

    Google Scholar 

  2. Singh PK, Dwivedi DK (2017) Chalcogenide glass: fabrication techniques, properties and applications. Ferroelectrics 520(1):256–273. https://doi.org/10.1080/00150193.2017.1412187

  3. Shen W, Zeng P, Yang Z, Xia D, Du J, Zhang B, Li Z (2020) Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photonics Res 8(9):1484–1490. https://www.osapublishing.org/prj/fulltext.cfm?uri=prj-8-9-1484&id=437499

  4. Ahluwalia G (2018) Applications of chalcogenides: S, Se, and Te. 2018-Sustain Ind Process Summit 6:297–304. https://www.flogen.org/sips2018/paper-6-164.html

  5. Macak JM, Kohoutek T, Wang L, Beranek R (2013) Fast and robust infiltration of functional material inside titania nanotube layers: case study of a chalcogenide glass sensitizer. Nanoscale 5(20):9541–9545. https://pubs.rsc.org/en/content/articlehtml/2013/nr/c3nr03014h

  6. Wang J, Yu X, Lon, N, Su, X, Yin G, Jiao Q, Lin C (2019) Spontaneous crystallization of PbCl2 nanocrystals in GeS2-Sb2S3 based chalcogenide glasses. J Non-Cryst Solids. 521:119543. https://www.sciencedirect.com/science/article/abs/pii/S0022309319304144

  7. Abe K, Takebe H, Morinaga K (1997) Preparation and properties of Ge-Ga-S glasses for laser hosts. J Non-Cryst Solids 212(2–3):143–150. https://doi.org/10.1016/S0022-3093(96)00655-2

    Article  ADS  Google Scholar 

  8. Ledemi Y, Messaddeq SH, Skhripachev I, Ribeiro SJL, Messaddeq Y (2009) Influence of Ga incorporation on photoinduced phenomena in Ge–S based glasses. J Non-Cryst Solids 355(37–42):1884–1889. https://doi.org/10.1016/j.jnoncrysol.2009.04.046

    Article  ADS  Google Scholar 

  9. Lin C, Rüssel C, Dai S (2018) Chalcogenide glass-ceramics: functional design and crystallization mechanism. Prog Mater Sci 93:1–44. https://www.sciencedirect.com/science/article/abs/pii/S0079642517301317

  10. Elliott SR (2015) Chalcogenide phase-change materials: past and future. Int J Appl Glass Sci 6(1):15–18. https://doi.org/10.1111/ijag.12107

  11. Lotnyk A, Hilmi I, Behrens M, Rauschenbach B (2021) Temperature dependent evolution of local structure in chalcogenide-based superlattices. Appl Surf Sci 536:147959. https://www.sciencedirect.com/science/article/abs/pii/S0169433220327161

  12. Calvez L, Lucas P, Rozé M, Ma HL, Lucas J, Zhang XH (2007) Influence of gallium and alkali halide addition on the optical and thermo–mechanical properties of GeSe2-Ga2Se3 glass. Appl Phys A 89(1):183–188. https://doi.org/10.1007/s00339-007-4081-y

    Article  ADS  Google Scholar 

  13. Masselin P, Le Coq D, Calvez L, Petracovschi E, Lépine E, Bychkov E, Zhang X (2012) CsCl effect on the optical properties of the 80GeS2–20Ga2S3 base glass. Appl Phys A 106(3):697–702. https://doi.org/10.1007/s00339-011-6668-6

    Article  ADS  Google Scholar 

  14. Ledemi Y, Calvez L, Rozé M, Zhang XH, Bureau B, Poulain M, Messaddeq Y (2007) Totally visible transparent chloro-sulphide glasses based on Ga2S3-GeS2-CsCl. J Optoelectron Adv Mater 9(12):3751. http://hdl.handle.net/11449/38619

  15. Seddon AB, Tang Z, Furniss D, Sujecki S, Benson TM (2010) Progress in rare-earth-doped mid-infrared fiber lasers. Opt Express 18(25):26704–26719. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-25-26704&id=208653

  16. Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Chen G (2011) Intense near-infrared and midinfrared luminescence from the Dy3+-doped GeSe2–Ga2Se3–MI (M= K, Cs, Ag) chalcohalide glasses at 1.32, 1.73, and 2.67 μ m. J Appl Phys 109(3):033105. https://doi.org/10.1063/1.3531555

  17. Lin C, Dai S, Liu C, Song BA, Xu Y, Chen F, Heo J (2012) Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+. Appl Phys Lett 100(23):231910. https://doi.org/10.1063/1.4727900

  18. Yao W, Martin SW (2008) Ionic conductivity of glasses in the MI+M2S+(0.1Ga2S3+ 0.9GeS2) system (M= Li, Na, K and Cs). Solid State Ionics 178(33–34):1777–1784. https://www.sciencedirect.com/science/article/abs/pii/S0167273807003098

  19. Bhattacharya S, Acharya A, Das AS, Bhattacharya K, Ghosh CK (2019) Lithium ion conductivity in Li2O–P2O5–ZnO glass-ceramics. J Alloy Compd 786:707–716. https://www.sciencedirect.com/science/article/abs/pii/S0925838819302373

  20. Kuo PH, Du J (2019) Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+xAlxGe2–x(PO4)3 solid-state electrolytes. J Phys Chem C 123(45):27385–27398. https://doi.org/10.1021/acs.jpcc.9b08390

  21. Ren J, Wagner T, Orava J, Frumar M, Frumarova B (2008) Reversible photoinduced change of refractive index in ion-conducting chalcohalide glass. Appl Phys Lett 92(1):011114. https://doi.org/10.1063/1.2830941

  22. Ren J, Wagner T, Orava J, Kohoutek T, Frumarova B, Frumar M, Jain H (2008) In-situ measurement of reversible photodarkening in ion-conducting chalcohalide glass. Opt Express 16(3):1466–1474. https://www.osapublishing.org/oe/abstract.cfm?uri=OE-16-3-1466

  23. Zhang XH, Calvez L, Seznec V, Ma HL, Danto S, Houizot P, Lucas J (2006) Infrared transmitting glasses and glass-ceramics. J Non-Cryst Solids 352(23–25):2411–2415. https://www.sciencedirect.com/science/article/abs/pii/S0022309306004704

  24. Shpotyuk O, Calvez L, Petracovschi E, Klym H, Ingram A, Demchenko P (2014) Thermally-induced crystallization behaviour of 80GeSe2-20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy. J Alloy Compd 582:323–327. https://doi.org/10.1016/j.jallcom.2013.07.127

    Article  Google Scholar 

  25. Klym H, Ingram A, Shpotyuk O, Calvez L, Petracovschi E, Kulyk B, Serkiz R, Szatanik R (2015) Cold’crystallization in nanostructurized 80GeSe2-20Ga2Se3 glass. Nanoscale Res Lett 10(1):1–8. https://doi.org/10.1186/s11671-015-0775-9

    Article  Google Scholar 

  26. Klym H, Shpotyuk O, Karbovnyk I, Calvez L, Popov AI (2019) Structural investigation of crystallized Ge-Ga-Se chalcogenide glasses. IOP Conf Ser Mater Sci Eng 503(1):012020. https://doi.org/10.1088/1757-899X/503/1/012020

  27. Klym H, Ingram A, Shpotyuk O (2016) Free-volume nanostructural transformation in crystallized GeS2–Ga2S3–CsCl glasses. Materialwiss Werkstofftech 47(2–3):198–202. https://doi.org/10.1002/mawe.201600476

    Article  Google Scholar 

  28. Klym H, Ingram A, Shpotyuk O, Karbovnyk I (2016) Influence of CsCl addition on the nanostructured voids and optical properties of 80GeS2-20Ga2S3 glasses. Opt Mater 59:39–42. https://doi.org/10.1016/j.optmat.2016.03.004

    Article  ADS  Google Scholar 

  29. Klym H, Karbovnyk I, Cestelli Guidi M, Hotra O, Popov AI (2016) Optical and vibrational spectra of CsCl-enriched GeS2-Ga2S3 glasses. Nanoscale Res Lett 11(1):1–6. https://doi.org/10.1186/s11671-016-1350-8

    Article  Google Scholar 

  30. Klym H, Ingram A, Shpotyuk O, Hotra O, Popov AI (2016) Positron trapping defects in free-volume investigation of Ge-Ga-S-CsCl glasses. Radiat Meas 90:117–121. https://doi.org/10.1016/j.radmeas.2016.01.023

    Article  Google Scholar 

  31. Klym H, Ingram A, Shpotyuk O, Szatanik R (2015) Free-volume study in GeS2-Ga2S3-CsCl chalcohalide glasses using positron annihilation technique. Phys Procedia 76:145–148. https://doi.org/10.1016/j.phpro.2015.10.026

    Article  ADS  Google Scholar 

  32. Klym H, Kozdras A, Ingram A, Calvez L (2020) Structural transformation caused by crystallization in the Ge-Ga-S (CsCl) glasses. Mol Cryst Liq Cryst 700(1):34–47. https://doi.org/10.1080/15421406.2020.1732550

  33. Karbovnyk I, Olenych I, Aksimentyeva O, Klym H, Dzendzelyuk O, Olenych Y, Hrushetska O (2016) Effect of radiation on the electrical properties of PEDOT-based nanocomposites. Nanoscale Res Lett 11(1):84. https://doi.org/10.1186/s11671-016-1293-0

  34. Karbovnyk I, Collins J, Bolesta I, Stelmashchuk A, Kolkevych A, Velupillai S, Klym H, Fedyshyn O, Tymoshyk S, Kolych I (2015) Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies. Nanoscale Res Lett 10(1):1–5. https://doi.org/10.1186/s11671-015-0855-x

  35. Shpotyuk O, Brunner M, Hadzaman I, Balitska V, Klym H (2016) Analytical description of degradation-relaxation transformations in nanoinhomogeneous spinel ceramics. Nanoscale Res Lett 11(1):499. https://doi.org/10.1186/s11671-016-1722-0

  36. Calvez L, Lin C, Rozé M, Ledemi Y, Guillevic E, Bureau B, Allix M, Zhang X (2010) Similar behaviors of sulfide and selenide-based chalcogenide glasses to form glass ceramics. Proc SPIE 7598:759802–759808. https://doi.org/10.1117/12.840968

    Article  Google Scholar 

  37. Rodriguez-Carvajal J, Roisnel T (2000) WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater Sci Forum 378–381

    Google Scholar 

  38. Elliott SR (1991) Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys Rev Lett 67(6):711–714. https://doi.org/10.1103/PhysRevLett.67.711

  39. Elliott SR (1995) Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J Non-cryst Solids 182(1–2):40–48. https://www.sciencedirect.com/science/article/abs/pii/0022309394005397

  40. De Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP (1982) Use of the voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Crystallogr 15(3):308–314. https://scripts.iucr.org/cgi-bin/paper?a21783

  41. Lozac’h AL, Guittard M (1977) Systeme ternaire La2Se3-Ga2Se3-GeSe2 diagramme de phase. Mater Res Bull 12:887–893

    Article  Google Scholar 

  42. Roze M, Calvez L, Ledemi Y, Allix M, Matzen G, Zhang XH (2008) Optical and mechanical properties of glasses and glass–ceramics based on the Ge–Ga–Se system. J Am Ceram Soc 91(11):3566–3570. https://doi.org/10.1111/j.1551-2916.2008.02684.x

  43. Keshari AK, Pandey AC (2008) Size and distribution: a comparison of XRD, SAXS and SANS study of II–VI semiconductor nanocrystals. J Nanosci Nanotechnol 8(3):1221–1227. https://www.ingentaconnect.com/content/asp/jnn/2008/00000008/00000003/art00024

Download references

Acknowledgements

H. Klym thanks to the Ministry of Education and Science of Ukraine for support, Dr. L. Calvez for sample preparation, Prof. O. Shpotyuk for discussion, and Dr. P. Demchenko for assistance in XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Klym .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klym, H., Karbovnyk, I., Vasylchyshyn, I. (2021). On the Crystallization Ability of 80GeSe2-20Ga2Se3 Glasses. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-74741-1_5

Download citation

Publish with us

Policies and ethics