Skip to main content

Semiconductor Magnetosensitive Structure Two-Dimensional Model Representation

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 263))

Included in the following conference series:

  • 332 Accesses

Abstract

The magnetotransistor structures (MTS) modeling concept as a special class of semiconductor magnetic field transducers is proposed. The legality is substantiated, and the injection MTS two-dimensional modeling method is offered. Two-dimensional models of MTS structures of vertical and horizontal modifications in accordance with the longitudinal and transverse magnetic axes are considered. The equivalence of the two-dimensional model representation of MTS of different types is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glauberman MA, Kozel VV, Nakhabin AV (2000) Charge-carrier transport in a double-collector magnetotransistor. Semiconductors 34:603–605. https://doi.org/10.1134/1.1188036

    Article  ADS  Google Scholar 

  2. Glauberman MA, Egorov VV, Kanishcheva NA, Kozel VV (2010) Zavisimost effektivnosti preobrazovaniya magnitotranzistora ot vremeni zhizni inzhektirovannykh nositeley (Dependence of the conversion efficiency of the magnetotransistor on the lifetime of the injected carriers), 4th International Scientific and Technical Conference “Sensor Electronics and Microsystem Technologies” SEMST-4. Odessa, June 28–July 2, 2010, Abstracts, Odesa Astroprint: 194

    Google Scholar 

  3. Gordiєnko YuO, Larkin SYu, Lepikh YaI ta in. (2011) Teoretichni aspekti modelyuvannya ta proyektuvannya rezonatornikh zondiv dlya skanuyuchoї mikroskopiї (Theoretical aspects of the modeling and design of resonator probes for scanning microscopy). Sens Electron Microsyst Technol 2(3):97–107

    Google Scholar 

  4. Glauberman M, Egorov, Kulinich O (2012) Magnetotransistors: physics, modeling, application of LAP LAMBERT Academic Publishing GmbH & Co.KG:136

    Google Scholar 

  5. Lepikh YaI, Gordiєnko YuO, Dzyadevich SV ta in (2011) Intelektualni vimiryuvalni sistemi na osnovi mikroyelektronnikh datchikiv novogo pokolinnya (Intelligent visual systems based on microelectronic sensors of the new generation). Monograph Odesa Astroprint: 352

    Google Scholar 

  6. Guvenc MG (1988) Finite-element analysis of magnetotransistor action. IEEE Trans Electron Dev 35(11):1851–1860

    Article  ADS  Google Scholar 

  7. Nathan A, Maenaka K, Allegretto W, Baltes H, Nakam T (1989) The Hall effect in integrated magnetotransistors. IEEE Trans Electron Dev 36(1):108–117

    Article  ADS  Google Scholar 

  8. Vikulina LF, Glauberman MA (2000) Fizika sensoriv temperaturi i magnitnogo polya (Physics of temperature and magnetic field sensors) Odesa Mayak, 244

    Google Scholar 

  9. Krasyukov AYu, Krupkina TYu, Chaplygin YuA (2015) Modelirovaniye kharakteristik i optimizatsiya konstruktivno-tekhnologicheskikh parametrov integralnykh magnitochuvstvitelnykh elementov v sostave mikro- i nanosistem MIyeT. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika (Modeling of characteristics and optimization of constructive and technological parameters of integral magnetosensitive elements as part of micro- and nanosystems MIET, Izvestiya of higher educational institutions. Electronics 20 (5):489–496

    Google Scholar 

  10. Kozlov AV, Krasjukov AY, Krupkina TY (2016) Simulation of characteristics and optimization of the constructive and technological parameters of integrated magnetosensitive elements in micro and nanosystems. Russ Microelectron 45:522–527. https://doi.org/10.1134/S1063739716070088

    Article  Google Scholar 

  11. Rahman M, Hassan A, Imamuddin M (1987) Effect of magnetic field on the electrical paramters of the junction transistors with theoretical explaination. Indian J Pure Appl Phys 25(5 & 6):231–234

    Google Scholar 

  12. Zieren V (1984) Geometrical analysis of the offset in buriedcollector vertical magnetotransistor. Sens Actuators 5(3):199–206

    Article  Google Scholar 

  13. Persiyanov TV, Barabich IN, Parsamyan DK, Tairova DA (1986) Chislennyy dvumernyy analiz raspredeleniya neosnovnykh nositeley zaryada v baze mnogokollektornykh magnitotranzistorov(Numerical two-dimensional analysis of the distribution of minority charge carriers in the base of multi-collector magnetotransistors) In Matematicheskoye modelirovaniye i eksperimentalnyye issledovaniya elektricheskoy relaksatsii v elementakh mikroskhem (Mathematical modeling and experimental research of electrical relaxation in microcircuit elements) Moscow, pp 66–72

    Google Scholar 

  14. Davies LW, Wells MS (1971) Magneto-transistor incorporated in an integrated circuit. In: Proceedings IREE Australia, June, pp 235–238

    Google Scholar 

  15. Baltes GP, Popovich RS (1986) Integralni napivprovidnikovi datchiki magnitnogo polya TIIER (Integral magnetic field sensors TIIER) 74(8):60–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Lepikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glauberman, M.A., Lepikh, Y.I. (2021). Semiconductor Magnetosensitive Structure Two-Dimensional Model Representation. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-74741-1_29

Download citation

Publish with us

Policies and ethics