Skip to main content

Influence of the Preparation Method and Magnesium Ions Substitution on the Structure and Magnetic Properties of Lithium-Iron Ferrites

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO 2020)

Abstract

In this work, magnesium-substituted lithium-iron spinels were synthesized by two methods: sol–gel auto combustion and ceramic. Conducted X-ray, Mössbauer, and impedance studies have shown the advantages of the sol–gel method of auto combustion. It was found that sol–gel synthesis leads to nano disperse particles with higher porosity, higher value of the lattice constant, and the degree of stoichiometry of lithium than in systems, synthesized by ceramic method. The samples obtained by sol–gel method have a more perfect structure and are highly stoichiometric. The results obtained in this work confirmed the fact that the reduction in part size leads to a dominant contribution of the particle surface, which significantly changes the properties of the synthesized material. Studies of the conductive and dielectric properties of magnesium-substituted lithium-iron spinels based on impedance spectroscopy have shown that the studied systems are characterized by the presence of two conduction mechanisms: electronic and ionic; electronic conductivity is based on the jumping mechanism due to the presence of ferrous ions and is realized mainly by the volume of grains in the octa-sublattice of spinel. With increasing number of ions of substituted magnesium for systems synthesized by ceramic method, the value of conductivity at direct current does not change due to participation in the hopping mechanism of stable complexes \(\left[ {{\text{Li}}_{{{\text{tetra}}}}^{ + } {\text{Fe}}_{{{\text{octa}}}}^{3 + } } \right]\), formed during substitution. The obtained results showed the expediency of using the sol–gel method of auto combustion for the synthesis of high-quality nanosized ferrites with improved technological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar MN, Yousaf M, Lu Y, Khan MA, Sarosh A, Arshad M, Niamat M, Farhan M, Ahmad A, Khallidoon MU (2021) Ceramics International

    Google Scholar 

  2. Fantechi E, Innocenti C, Bertoni G, Sangregorio C, Pineider F (2020) Nano Res 13:785

    Article  Google Scholar 

  3. Thota S, Singh S (2017) Magnetic spinels—synthesis, properties and applications. InTech

    Google Scholar 

  4. Zhang Y, Yuan L, Zhang X, Zhang J, Yue Z, Li L (2017) Appl Surf Sci 410:99

    Article  ADS  Google Scholar 

  5. Uhorchuk OM, Uhorchuk VV, Karpets MV (2015) J Nano-Electron Phys 7(2)

    Google Scholar 

  6. Deepty M, Srinivas Ch PN, Ramesh N, Mohan K, Singh MS, Prajapat CL, Verma A, Sastry DL (2020) Sens Actuators B Chem 316:128127

    Google Scholar 

  7. Hao X, Liu T, Li W, Zhang Y, Ouyang J, Liang X, Liu F, Yan X, Zhang C, Gao Y, Wang L, Lu G (2020) Sens Actuators B Chem 302:127206

    Google Scholar 

  8. Ostafijchuk BK, Bushkova VS, Moklyak VV, lnitsky RV (2015) Ukr J Phys 60:1234

    Google Scholar 

  9. Soman VV, Nanoti VM, Kulkarni DK (2013) Ceram Int 39:5713

    Article  Google Scholar 

  10. Kotsyubynsky V, Moklyak V, Hrubiak A (2014) Mater Sci-Pol 32:481

    Article  ADS  Google Scholar 

  11. Kopayev AV, Mokljak VV, Gasyuk IM, Kozub VV (2015) SSP 230:114

    Article  Google Scholar 

  12. Sijo AK, Jha VK, Kaykan LS, Dutta DP (2020) J Magnetism Magnetic Mater 497:166047

    Google Scholar 

  13. Poudel TP, Rai BK, Yoon S, Guragain D, Neupane D, Mishra SR (2019) J Alloy Compd 802:609

    Article  Google Scholar 

  14. Gajula GR, Buddiga LR (2020) J Magnetism Magnetic Mater 494:165822

    Google Scholar 

  15. Ostafiychuk BK, Kaykan LS, Kaykan JS, Ya B, Deputat, Shevchuk OV (2017) Nanoscale Res Lett 12

    Google Scholar 

  16. Kaykan LS, Kaykan JS, Yaremiy IP, Ugorchuk OM, Deputat BY, Nykoliuk MO (2016) J Nano-Electron Phys 8:04066

    Article  Google Scholar 

  17. Almessiere MA, Slimani Y, Rehman S, Khan FA, Polat EG, Sadaqat A, Shirsath SE, Baykal A (2020) Mater Sci Eng C 116:111186

    Google Scholar 

  18. Agostini M, Matic A, Panero S, Croce F, Gunnella R, Reale P, Brutti S (2017) Electrochim Acta 235:262

    Article  Google Scholar 

  19. Hagh NM, Amatucci GG (2010) J Power Sources 195:5005

    Article  Google Scholar 

  20. Kotsyubynsky VO, Grubiak AB, Moklyak VV, Pylypiv VM, Lisovsky RP (2016) Metallofiz Noveishie Tekhnol 36:1497

    Article  Google Scholar 

  21. Arshad MI, Arshad S, Mahmood K, Ali A, Amin N, Umaid-ur-Rehman, Isa M, Akram A, Sabir N, Ajaz-un-Nabi M (2020) Physica B Condensed Matter 599:412496

    Google Scholar 

  22. Yokozaki R, Kobayashi H, Honma I Ceramics Int (2020)

    Google Scholar 

  23. Zhang Z (2020) Mater Today Commun 101734

    Google Scholar 

  24. Jha VK, Alam SN, Roy M (2019) J Supercond Nov Magn 33:455

    Google Scholar 

  25. Kaykan LS, Mazurenko JS, Sijo AK, Makovysyn VI (2020) Appl Nanosci 10:2739

    Article  Google Scholar 

  26. El-Fadl AA, Abd-Elrahman MI, Younis N, Afify N, Abu-Sehly AA, Hafiz MM (2019) J Alloy Compd 795:114

    Article  Google Scholar 

  27. Ferchmin AR, Klama S, Krompiewski S (1979) Czech J Phys 29:883

    Article  ADS  Google Scholar 

  28. Gul S, Yousuf MA, Anwar A, Warsi MF, Agboola PO, Shakir I, Shahid M (2020) Ceram Int 46:14195

    Article  Google Scholar 

  29. Kumar L, Kumar P, Kar M (2013) J Mater Sci Mater Electron 24:2706

    Article  Google Scholar 

  30. Zaki HM, AL-Heniti SH, Aljwiher MM (2020) Physica B Condensed Matter 597:412382

    Google Scholar 

  31. Poole CP Jr, Farach HA (1982) Z Physik B Condensed Matter 47:55

    Article  ADS  Google Scholar 

  32. Mondal RA, Murty BS, Murthy VRK (2014) Curr Appl Phys 14:1727

    Article  ADS  Google Scholar 

  33. Ostafiychuk BK, Gasyuk IM, Kaykan LS, Uhorchuk VV, Yakubovskiy PP, Tsap VA, Kaykan YuS (2016) Metallofiz Noveishie Tekhnol 36:89

    Article  Google Scholar 

  34. Mazurenko J (2020) Phys Chem Solid St 21:453

    Google Scholar 

  35. Dutta DP, Roy M (2017) Ceramics Int 43:16915

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaykan, L.S., Mazurenko, J.S. (2021). Influence of the Preparation Method and Magnesium Ions Substitution on the Structure and Magnetic Properties of Lithium-Iron Ferrites. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-74741-1_18

Download citation

Publish with us

Policies and ethics