Skip to main content

Predicting the Stability of Orthoarsenates Lu1–xLnxAsO4, Ln = Sm–Yb, Sc, Y, and La1–xLnxAsO4, Ln = Ce, Pr, Nd Solid Solutions

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 263))

Included in the following conference series:

  • 353 Accesses

Abstract

Urusov’s crystal energy theory of isomorphous substitutions was used to calculate mixing energies (interaction parameters) and critical decomposition temperatures (stability temperatures) of solid solutions in the systems Lu1–xLnxAsO4, Ln = Sm–Yb, Sc, Y with zircon structure, and La1–xLnxAsO4, Ln = Ce, Pr, Nd with monazite structure. For the Lu1–xLnxAsO4 system, a diagram of the thermodynamic stability of solid solutions is built that makes it possible to predict the thermodynamic stability of solid solutions. It is characterized by the presence of regions of thermodynamic stability and metastability of solid solutions. Above the critical temperatures, solid solutions are thermodynamically stable, and below the critical temperatures, they are metastable. The present results can be useful in choosing the ratio of components in “mixed” matrices, the amount of activator in luminescent, laser, and other practically important materials, as well as in matrices for immobilization of toxic and radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clavier N, Podor R, Dacheux N (2011) Crystal chemistry of the monazite structure. J Eur Ceram Soc 31:941–976

    Article  Google Scholar 

  2. Boatner LA (2002) Synthesis, structure, and properties of monazite, pretulite, and xenotime. Rev Mineral Geochem 48:87–121

    Article  Google Scholar 

  3. Ye X, Wu D, Yang M, Li Q, Huang X, Yang Y, Nie H (2014) luminescence properties of fine-grained ScVO4:Eu3+ and Sc0.93–xLnxVO4:Eu3+0.07 (Ln = Y, La, Gd, Lu) phosphors. ECS J Solid State Sci Technol 3:R95–R99

    Article  Google Scholar 

  4. Grechanovsky AE, Eremin NN, Urusov VS (2013) Radiation resistance of LaPO4 (monazite structure) and YbPO4 (zircon structure) from data of computer simulation. Phys Solid State 55:1929–1935

    Article  ADS  Google Scholar 

  5. Schlenz H, Heuser J, Neumann A, Schmitz S, Bosbach D (2013) Monazite as a suitable actinide waste form. Z Kristallogr-Cryst Mater 228:113–123

    Article  Google Scholar 

  6. Meldrum A, Boatner LA, Wang LM, Ewing RC (1997) Ion-beam-induced amorphization of LaPO4, and ScPO4. Nucl Instrum Method B 127–128:160–165

    Article  ADS  Google Scholar 

  7. Meldrum A, Boatner LA, Ewing RC (2000) A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral Mag 64:185–194

    Article  Google Scholar 

  8. Bondar IA, Vinogradova NV, Demyanets LN, Yezhova ZhA, Ilyukhin VV, Kara-Ushanov VYu, Komissarova LN (1983) Soyedineniya redkozemel’nykh elementov. Silikaty, germanaty, fosfaty, arsenaty, vanadaty [Compounds of rare earth elements. silicates, germanates, phosphates, arsenates, vanadates]. Nauka, Moscow, 288 p. (in Russian)

    Google Scholar 

  9. Schmidt M, Muller U, Gil RC, Milke E, Binnewies M (2005) Chemical vapour transport and crystal structure of rare-earth arsenates (V). Z Anorg Allg Chem 631:1154–1162

    Article  Google Scholar 

  10. Harck JF, Wilkis S, Winters I (2004) Composition and process for removing arsenic and selenium from aqueous solution: U.S. patent US 6800204 B2. Int. Cl. C02F 1/28. Date of patent: 5 Oct 2004; prior publication: 21 Aug 2003

    Google Scholar 

  11. Ismailzade IH, Alekberov AI, Ismailov RM, Asadova RK, TsD G, YeM N (1980) Ferroelectricity in the crystals RAsO4 (R = Pr, Nd, Eu, Gd, Tb, Dy, Er, Yb). Ferroelectrics 23:35–38

    Article  Google Scholar 

  12. Samarium-doped scandium arsenate luminescent film, electroluminescent device containing samarium-doped scandium arsenate luminescent film and their preparation methods: China patent CN 104673306 A. Int. Cl. C09K 11/78 (2006.01), H01L 33/50 (2010.01). Priority date: 27 Nov 2013; publication: 03 June 2015. (in Chinese)

    Google Scholar 

  13. Kolitsch U, Holtstam D (2004) Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. Eur J Mineral 16:117–126

    Article  Google Scholar 

  14. Feigelson RS (1967) Crystal growth of rare-earth orthoarsenates. J Am Ceram Soc 50:433–434

    Article  Google Scholar 

  15. Zagumennyi AI, Popov PA, Zerouk F, Zavartsev YuD, Kutovoi SA, Shcherbakov IA (2008) Heat conduction of laser vanadate crystals. Quantum Electron 38:227–232

    Article  Google Scholar 

  16. Yu HH, Zhang HJ, Wang ZP, Wang JY, Yu YG, Cheng XF, Shao ZS, Jiang MH (2007) Characterization of mixed Nd: LuxGd1−xVO4 laser crystals. J Appl Phys 101:113109

    Article  ADS  Google Scholar 

  17. Burba J, Hassler C, Pascoe J, Wright B, Whitehead C, Lupo J, O’Kelley CB, Cable R (2010) Target material removal using rare earth metals: U.S. patent US 2010/0155330 A1. Int. Cl. C02F 1/42, C09K 3/00 (2006.01). Publication: 24 June 2010

    Google Scholar 

  18. Urusov VS (1975) Energetic theory of miscibility gaps in mineral solid solutions. Fortschr Mineral 52:141–150

    Google Scholar 

  19. Urusov VS (1977) Teoriia izomorfnoi smesimosti (Theory of isomorphous miscibility). Nauka, Moscow, 251 p (in Russian)

    Google Scholar 

  20. Urusov VS, Tauson VL, Akimov VV (1997) Geokhimiya tverdogo tela [Geochemistry of solid state]. GEOS, Moscow, 500 p. (in Russian)

    Google Scholar 

  21. Li K, Xue D (2006) Estimation of electronegativity values of elements in different valence states. J Phys Chem A 110(39):11332–11337

    Article  Google Scholar 

  22. Batsanov SS (1968) The concept of electronegativity. Conclusions and prospects. Russ Chem Rev 37(5):332–351

    Article  ADS  Google Scholar 

  23. Batsanov SS (1977) Ob effektivnom koordinatsionnom chisle atomov v kristallakh [About the effective coordination number of atoms in crystals]. Zhurn Neorgan Khimii 22:1155–1159 (in Russian)

    Google Scholar 

  24. Templeton DH (1953) Madelung constants and coordination. J Chem Phys 21:2097–2098

    Article  ADS  Google Scholar 

  25. Get’man EI (1985) Izomorfnye zameshcheniia v volframatnyh i molybdatnyh sistemah [Isomorphous substitutions in tungstate and molybdate systems]. Nauka, Novosibirsk, 214 p. (in Russian)

    Google Scholar 

  26. Becker R (1937) Über den Aufbau binarer Legierungen. Z Metallkunde 29:245–249

    Google Scholar 

  27. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  28. Schwab M (1978) Phase transition in the mixed crystals TbpYl–pAsO4. Phys Status Solidi B 86:195–203

    Article  ADS  Google Scholar 

  29. Kasten A, Kahle HG, Klöfer P, Schäfer-Siebert D (1987) Specific heat experiments at the cooperative Jahn-Teller transition in the mixed crystal systems (TbxTm1−x)AsO4 and (TbxTm1−x)VO4. Phys Status Solidi B 144:423–436

    Article  ADS  Google Scholar 

  30. Get’man EI, Oleksii YuA, Radio SV (2020) Predicting the stability of orthoarsenates Sc1–xLnxAsO4 and TbxLn1–xAsO4 solid solutions. Nanosistemi, Nanomateriali, Nanotehnologii (in press)

    Google Scholar 

Download references

Acknowledgements

This study was carried out within the Fundamental Research Programme funded by the Ministry of Education and Science of Ukraine (grants ID 0119U100025 and 0120U102059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Radio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Get’man, E.I., Oleksii, Y.A., Kudryk, O.V., Radio, S.V., Ardanova, L.I. (2021). Predicting the Stability of Orthoarsenates Lu1–xLnxAsO4, Ln = Sm–Yb, Sc, Y, and La1–xLnxAsO4, Ln = Ce, Pr, Nd Solid Solutions. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-74741-1_1

Download citation

Publish with us

Policies and ethics