Skip to main content

Physiology of Aging

  • Reference work entry
  • First Online:
Geriatric Medicine
  • 394 Accesses

Abstract

With aging, there is an apparent depletion of physiologic reserves that has been termed homeostenosis. When the reserves are depleted, the older adult is intolerant of further challenges without crossing a precipice, that is, frailty. However, in the absence of a challenge, many of the age-related changes are not clinically apparent. The reserves are, in part, in use just to maintain homeostasis, and studies that measure how much they are in use, allostatic load, can predict age-associated outcomes. Inflammation at low levels and associated with age may be a driver of many of these processes. Because aging is experienced in diverse fashion, the heterogeneity of older adults is great and the differences between the aging of men and women are being increasingly recognized. Similarly, the heterogeneity in the loss of reserves among older adults contributes to their nonspecific presentations on illness. Understanding the fundamental age-related changes allows us to appreciate the unique population that older adults create.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cowdry EV, editor. Problems of ageing: biological and medical aspects. 2nd ed. Baltimore: Williams & Wilkins; 1942.

    Google Scholar 

  2. Goldstein DS. How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am J Physiol Regul Integr Comp Physiol. 2019;316(4):R301–17. PMID: 30649893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cannon WB. The wisdom of the body. New York: W.W. Norton & Co.; 1932.

    Book  Google Scholar 

  4. Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619–36.

    Article  CAS  PubMed  Google Scholar 

  5. Beer RJ, Teasdale TA, Ghusn HF, Taffet GE. Estimation of severity of illness with APACHE II: age-related implica¬tions in cardiac arrest outcomes. Resuscitation. 1994;27:189–95.

    Article  CAS  PubMed  Google Scholar 

  6. Gijzel SMW, Whitson HE, van de Leemput IA, Scheffer M, van Asselt D, Rector JL, Olde Rikkert MGM, Melis RJF. Resilience in clinical care: getting a grip on the recovery potential of older adults. J Am Geriatr Soc. 2019;67(12):2650–7. PMID: 31498881.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33:278–85.

    Article  CAS  PubMed  Google Scholar 

  8. Ghia P, Melchers F, Rolink AG. Age-dependent changes in B lymphocyte development in man and mouse. Exp Gerontol. 2000;35:159–65.

    Article  CAS  PubMed  Google Scholar 

  9. Underwood E. Starting young. Science. 2014;346(6209):568–71.

    Article  CAS  PubMed  Google Scholar 

  10. Farr JN, Khosla S. Skeletal changes through the lifespan – from growth to senescence. Nat Rev Endocrinol. 2015;11(9):513–21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Márquez EJ, Chung CH, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A, Mellert DJ, Kuchel GA, Banchereau J, Ucar D. Sexual-dimorphism in human immune system aging. Nat Commun. 2020;11(1):751.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jose AD. Effect of combined sympathetic and Para-sympa-thetic blockade on heart rate and cardiac function in man. Am J Cardiol. 1966;18:476–83.

    Article  CAS  PubMed  Google Scholar 

  13. Craft N, Schwartz JB. Effects of age on intrinsic heart rate, heart rate variability, and AV conduction in healthy humans. Am J Phys. 1995;268:H1441–52.

    CAS  Google Scholar 

  14. Peters CH, Sharpe EJ, Proenza C. Cardiac pacemaker activity and aging. Annu Rev Physiol. 2020;82:21–43.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi T, Schunkert H, Isoyama S, et al. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J Clin Investig. 1992;88:939–46.

    Article  Google Scholar 

  16. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev. 1993;73:413–67.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt U, del Monte F, Miyamoto MI, et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation. 2000;101:790–6.

    Article  CAS  PubMed  Google Scholar 

  18. Swinne CJ, Shapiro EP, Lima SD, Fleg JL. Age-associated changes in left ventricular diastolic performance during iso¬metric exercise in normal subjects. Am J Cardiol. 1992;69:823–6.

    Article  CAS  PubMed  Google Scholar 

  19. Freisinger E, Fuerstenberg T, Malyar NM, Wellmann J, Keil U, Breithardt G, Reinecke H. Eur German nationwide data on current trends and management of acute myocardial infarction: discrepancies between trials and real-life. Heart J. 2014;35(15):979–88.

    Article  Google Scholar 

  20. Seeman TE, Singer BH, Rowe JW, Horwitz RI, McEwen BS. Price of adaptation – allostatic load and its health consequences. MacArthur studies of successful aging. Arch Intern Med. 1997;157:2259–68.

    Article  CAS  PubMed  Google Scholar 

  21. Masoro EJ. Commentary. Hum Exp Toxicol. 2000;19:340–1.

    Article  CAS  PubMed  Google Scholar 

  22. Calabrese EJ. Hormesis: path and progression to significance. Int J Mol Sci. 2018;19:2871.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lipsitz LA, Goldberger AL. Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267:1806–9.

    Article  CAS  PubMed  Google Scholar 

Bibliography

  • Masoro EJ, editor. Handbook of physiology, section 11, aging. New York: American Physiological Society, Oxford Press; 1995.

    Google Scholar 

  • Taffet GE, Aging physiology, up to date 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Taffet .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Taffet, G.E. (2024). Physiology of Aging. In: Wasserman, M.R., Bakerjian, D., Linnebur, S., Brangman, S., Cesari, M., Rosen, S. (eds) Geriatric Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-74720-6_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74720-6_103

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74719-0

  • Online ISBN: 978-3-030-74720-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics