Skip to main content

The Apple Genome and Epigenome

  • Chapter
  • First Online:
The Apple Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Within a span of the last two decades, sequencing technologies have rapidly evolved, allowing for the production of genome sequences from multiple angiosperm clades, including major crops and botanical models. Apple (Malus × domestica) is among the first crop genomes to be fully sequenced, thus contributing to expanded knowledge of genome structure, biological functions, trait physiology and inheritance, and leading to practical applications for crop improvement. Access to full genome sequences has also allowed for the development of new fields of investigation, such as epigenetics. With the advent of accurate and cheaper new sequencing technologies, together with high-throughput phenotyping methods, the next decade will probably see the development of projects based on whole epi/genome sequencing or resequencing, providing researchers with a firm foundation to investigate the dynamics involved in the development of traits of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–251

    Article  CAS  Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheleti D, Kerschbamer E, Di Piero EA, Larger S, Pindo M, Van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M (2016) Development and validation of the Axiom®Apple480K SNP genotyping array. Plant J 86:62–74

    CAS  PubMed  Google Scholar 

  • Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, Van de Weg E, Troggio M (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus x domestica Borkh). PloS ONE 9:e110377

    Google Scholar 

  • Bianco L, Riccadonna S, Lavezzo E, Falda M, Formentin E, Cavalieri D, Toppo S, Fontana P (2017) Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics 33:453–455

    CAS  PubMed  Google Scholar 

  • Boocock J, Chagné D, Merriman TR, Black MA (2015) The distribution and impact of common copy-number variation in the genome of the domesticated apple Malus x domestica Borkh. BMC Genomics 16:848

    Article  Google Scholar 

  • Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torrez M, Helt G, Goodstein DM, Elsik CG, Lewis SE, Stein L, Holmes IH (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66. https://doi.org/10.1186/s13059-016-0924-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi R, Dreher K, Karp PD (2013) The challenge of constructing classifying and representing metabolic pathways. FEMS Microbiol Lett 345:85–93

    Article  CAS  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Wew E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection validation and development of an 8K SNP array for apple. PloS ONE 7:e31745

    Google Scholar 

  • Chen X, Li S, Zhang D, Han M, Jin X, Zhao C, Wang S, Xing L, Ma J, Ji J, An N (2019) Sequencing of a wild apple (Malus baccata) genome unravels the differences between cultivated and wild apple species regarding disease resistance and cold tolerance G3: GENES GENOMES GENET 9:2051–2060

    Google Scholar 

  • Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15

    Article  Google Scholar 

  • Cho HJ, Kim GH, Choi C (2020) Differential gene expression and epigenetic analyses between striped and T blushed skinned sports of ‘Fuji’ apple. Scient Hortic 261. https://doiorg/doiorg/101016/jscienta2019108944

    Google Scholar 

  • Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, Van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099. https://doiorg/doi:101038/ng3886

    Google Scholar 

  • Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Luis LL, Garkava-Gustavsson L, Micheletti D, Bink MCAM, Voorrips R, Aziz E, Velasco R, Laurens F, Van de Weg WE (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hort Res 3:16057. https://doi.org/10.1038/hortres.2016.57

    Article  CAS  Google Scholar 

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong G-Y, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249. https://doi.org/10.1038/s41467-017-00336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM, Niederhuth CE, Alger EI, Ou S, Acharya CB, Wang J, Callow P, McKain MR, Shi J, Collier C, Xiong Z, Mower JP, Slovin JP, Hytonen T, Jiang N, Childs KL, Knapp SJ (2018) Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaSci 7(2):1–7. https://doi.org/10.1093/gigascience/gix124

    Article  CAS  Google Scholar 

  • El-Sharkawy I, Liang D, Xu K (2015) Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66:7359–7376. https://doi.org/10.1093/jxb/erv433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Fedoroff NV (2012) Transposable elements epigenetics and genome evolution. Science 338:758–767

    Article  CAS  Google Scholar 

  • Feng Y, Zhang X, Wu T, Xu X, Han Z, Wang Y (2017) Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock Biochem Biophys Res Commun 482:604–609

    Google Scholar 

  • Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in de novo annotation approaches. PloS ONE 6:e16526

    Google Scholar 

  • Gully K, Celton J-M, Degrave A, Pelletier S, Brisset M-N, Bucher E (2019) Biotic stress-induced priming and de-priming of transcriptional memory in arabidopsis and apple. Epigenomes 3(1):3. https://doi.org/10.3390/epigenomes3010003

    Article  CAS  Google Scholar 

  • Jiang S-H, Sun Q-G, Chen M, Wang N, Xu H-F, Fang H-C, Wang Y-C, Zhang Z-Y, Chen X-S (2019) Methylome and transcriptome analyses of apple fruit somatic mutations reveal the difference of red phenotype. BMC Genomics 20:117. https://doi.org/10.1186/s12864-019-5499-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung S, Lee T, Cheng C-H, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K, Scott K, Frank M, Ru S, Hough H, Evans K, Peace C, Olmstead M, DeVetter LW, McFerson J, Coe M, Wegrzyn JL, Staton ME, Abbott AG, Main D (2019) 15 years of GDR: new data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res 47:D1137–D1145

    Article  Google Scholar 

  • Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395

    Article  CAS  Google Scholar 

  • Kumar G, Rattan UK, Singh AK (2016) Chilling-mediated DNA methylation changes during dormancy and its release reveal the importance of epigenetic regulation during winter dormancy in apple (Malus × domestica Borkh). PloS ONE 11:e0149934

    Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kawahara Y, Itoh R, Itoh T, Katayose Y, Kanamori H, Matsumoto T, Mori S, Sasaki H, Matsumoto T, Nishitani C, Terakami S, Yamamoto T (2016) Genomic dissection of a ‘Fuji’ apple cultivar: re-sequencing SNP marker development definition of haplotypes and QTL detection. Breed Sci 66(4):499–515. https://doiorg/doi:101270/jsbbs16018

    Google Scholar 

  • Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, Myles S, Orgaard M, Agerlin Petersen M, Pedersen C (2019) Genome-wide association studies in apple reveal loci for aroma volatiles sugar composition and harvest date. Plant Genome 12(2). https://doi.org/10.3835/plantgenome2018.12.0104

  • Law JA, Jacobsen SE (2010) Establishing maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  Google Scholar 

  • Lee HS, Kim GH, Kwon SI, Kim JH, Kwon YS, Choi C (2016) Analysis of ‘Fuji’ apple somatic variants from next-generation sequencing. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038185

  • Li W-F, Ning G-X, Mao J, Guo Z-H, Zhou Q, Chen B-H (2019) Whole-genome DNA methylation patterns and complex associations with gene expression associated with anthocyanin biosynthesis in apple fruit skin. Planta 250:1833–1847

    Article  CAS  Google Scholar 

  • Li X, Kui L, Jing Zhang J, Xie Y, Wang L, Yan Y, Wang N, Xu J, Li C, Wang W, van Nocker S, Dong Y, Ma F, Guan Q (2016) Improved hybrid de novo genome assembly of domesticated apple (Malus × domestica). GigaSci 5:35. https://doi.org/10.1186/s13742-016-0139-0

    Article  CAS  Google Scholar 

  • Linsmith G, Rombauts S, Montanari S, Deng CH, Celton JM, Guérif P, Liu C, Rolf L, Zurn JD, Cestaro A, Bassil NV, Bakker LV, Schijlen E, Gardiner SE, Lespinasse Y, Durel CE, Velasco R, Neale DB, Chagné D, Van de Peer Y, Troggio M, Bianco L (2019) Pseudo-chromosome length genome assembly of a double haploid ‘Bartlett’ pear (Pyrus communis L.). BioRxiv 8 (12):giz138. https://doi.org/10.1093/gigascience/giz138

  • Ma C, Jing C, Chang B, Yan J, Liang B, Liu L, Yang Y, Zhao Z (2018) The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin accumulation in skins of two non-red apple cultivars. BMC Plant Biol 18:108. https://doi.org/10.1186/s12870-018-1320-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure KA, Gardner KM, Douglas GM, Song J, Forney CF, DeLong J, Fan L, Du L, Toivonen PMA, Somers DJ, Rajcan I, Myles S (2018) A genome-wide association study of apple quality and scab resistance. Plant Genome 11(1). https://doi.org/10.3835/plantgenome2017.08.0075

  • McClure KA, Gong Y, Song J, Vinqvist-Tymchuk M, Campbell Palmer L, Fan L, Burgher-MacLellan K, Zhang Z, Celton J-M, Forney CF, Migicovsky Z, Myles S (2019) Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Hortic Res 6:107. https://doi.org/10.1038/s41438-019-0190-y

    Article  Google Scholar 

  • Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  Google Scholar 

  • Muranty H, Denancé C, Feugey L, Crépin JL, Barbier Y, Tartarini S, Ordidge M, Troggio M, Lateur M, Nybom H, Paprstein F, Laurens F, Durel CE (2020) Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm. BMC Plant Biol 20:2. https://doi.org/10.1186/s12870-019-2171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peace CP, Bianco L, Troggio M, Van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer R, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner S, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S (2019) Apple whole genome sequences: recent advances and new prospects. Hortic Res 6:59. https://doi.org/10.1038/s41438-019-0141-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrin A, Daccord N, Roquis D, Celton JM, Vergne E, Bucher E (2020) Divergent DNA methylation signatures of juvenile seedlings, grafts and adult apple trees. Epigenomes 4(1):4. https://doi.org/10.3390/epigenomes4010004

    Article  CAS  Google Scholar 

  • Piégu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems – A call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 86:90–109

    Article  Google Scholar 

  • Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrère S, Caissard JC, Couloux A, Cottret L, Aury J, Szécsi J, Latrasse D, Madoui M-A, François L, Fu X, Yang S-H, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50:772–777

    Article  CAS  Google Scholar 

  • Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Abu Bakar MF, Mat Isa MN, Noor YM (2018) Contribution of transposable elements in the plant’s genome. Gene 665:155–166

    Article  CAS  Google Scholar 

  • Seymour DK, Koenig D, Hagmann J, Becker C, Weigel D (2014) Evolution of DNA Methylation Patterns in the Brassicaceae is Driven by Differences in Genome Organization. PLOS Genet 10ºe1004785. https://doiorg/doi:101371/journalpgen1004785

    Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nature 8:272–285

    CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization - Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruye`re C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe` ME, Giorgio Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  Google Scholar 

  • Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton J-M, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel C-E (2017) Genome-wide association mapping of flowering and ripening periods in apple. Front Plant Sci 8:1923. https://doiorg/103389/fpls201701923

    Google Scholar 

  • Vanburen R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michae TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC, (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Dhingra, A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Ri AD, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury G, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner R, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doiorg/101038/ng654

    Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  Google Scholar 

  • Xing L, Li Y, Qi S, Zhang C, Ma W, Zuo X, Liang J, Gao C, Jia P, Shah K, Zhang D, An N, Zhao C, Han M, Zhao J (2019) Comparative RNA-sequencing and DNA methylation analyses of apple (Malus domestica Borkh.) buds with diverse flowering capabilities reveal novel insights into the regulatory mechanisms of flower bud formation. Plant Cell Physiol. https://doiorg/doi:101093/pcp/pcz080

    Google Scholar 

  • Xing L, Zhang D, Song X, Weng K, Shen Y, Li Y, Zhao C, Ma J, An N, Han M (2016) Genome-wide sequence variation identification and floral-associated trait comparisons based on the re-sequencing of the ‘Nagafu No 2’ and ‘Qinguan’ varieties of apple (Malus domestica Borkh). Front Plant Sci 7:908. https://doi.org/10.3389/fpls.2016.00908

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhou S, Gong X, Song Y, van Nocker S, Ma F, Guan Q (2018) Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotech J 16:672–687

    Article  CAS  Google Scholar 

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1494. https://doi.org/10.1038/s41467-019-09518-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Celton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Celton, JM., Bianco, L., Linsmith, G., Balzergue, S., Troggio, M. (2021). The Apple Genome and Epigenome. In: Korban, S.S. (eds) The Apple Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74682-7_8

Download citation

Publish with us

Policies and ethics