Skip to main content

New Challenges and Opportunities in Reliability Engineering of Complex Technical Systems

  • Chapter
  • First Online:
Reliability Engineering and Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 976))

Abstract

In this article, we discuss the impacts of technological transformations currently at work on reliability engineering of complex technical systems. We consider transformations both in systems and in means to study them. We review challenges to meet in order to manage the current technological paradigm shift. We advocate the potential benefits of the so-called model-based approach in probabilistic risk assessment. We exemplified this approach by presenting the S2ML+X modeling technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zio, E.: Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf. 94, 125–141 (2009)

    Google Scholar 

  2. Zio, E., Aven, T. Industrial disasters: extreme events, extremely rare. some reflections on the treatment of uncertainties in the assessment of the associated risks. Process Safe. Environ. Prot. 91, 31–45 (2013). https://doi.org/10.1016/j.psep.2012.01.004

  3. Aven, T., Baraldi, P., Flage, R. et al.: Uncertainty in Risk Assessment: The Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods. Chichester, West Sussex, United Kingdom: Wiley-Blackwell (2014). ISBN 978-1118489581

    Google Scholar 

  4. Aven, T.: The concept of antifragility and its implications for the practice of risk analysis. Risk Anal. 35(3), 476–483 (2015). https://doi.org/10.1111/risa.12279

    Article  Google Scholar 

  5. Rasmussen, N.C.: Reactor Safety Study. An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants. U.S. Nuclear Regulatory Commission. Rockville, MD, USA. WASH 1400, NUREG-75/014 (1975)

    Google Scholar 

  6. Andrews, J.D., Moss, R.T.: Reliability and Risk Assessment (second edition). Materials Park, Ohio 44073-0002, USA: ASM International (2002). ISBN 978-0791801833

    Google Scholar 

  7. Kumamoto, H., Henley, E.J.: Probabilistic Risk Assessment and Management for Engineers and Scientists. Piscataway, N.J., USA: IEEE Press (1996). ISBN 978-0780360174

    Google Scholar 

  8. Rauzy, A., Haskins, C.: Foundations for model-based systems engineering and model-based safety assessment. J. Syst. Eng. (2018). Wiley Online Library. https://doi.org/10.1002/sys.21469

  9. Batteux, M., Prosvirnova, T., Rauzy, A.: From models of structures to structures of models. In: IEEE International Symposium on Systems Engineering (ISSE 2018). IEEE. Roma, Italy, October (2018). https://doi.org/10.1109/SysEng.2018.8544424

  10. Brooks, F.: The Mythical Man-Month. Addison-Wesley, New York, NY, USA (1995). ISBN 0-201-83595-9

    Google Scholar 

  11. Rauzy, A.: Notes on computational uncertainties in probabilistic risk/safety assessment. Entropy (2018). MDPI. https://doi.org/10.3390/e20030162

  12. Oreda Handbook—Offshore Reliability Data, Vols. 1 and 2, 6th edn. (2015)

    Google Scholar 

  13. Datta, S.: Emergence of Digital Twins. DSpace@MIT. https://dspace.mit.edu/handle/1721.1/104429

  14. Lecun, Y.: L'apprentissage profond, Leçons inaugurales au Collège de France Fayard (2017. ISBN 978-2213701820 (in French)

    Google Scholar 

  15. Holt, J., Perry, S.: SysML for Systems Engineering: A Model-Based Approach. Institution of Engineering and Technology. Stevenage Herts, United Kingdom (2013). ISBN 978-1849196512

    Google Scholar 

  16. Yakymets, N., Munoz Julho, Y., Lanusse, A.: Sophia framework for model-based safety analysis. Actes du congrès Lambda-Mu 19 (actes électroniques). Institut pour la Maîtrise des Risques, Dijon, France (2014). ISBN 978-2-35147-037-4

    Google Scholar 

  17. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992). https://doi.org/10.1109/24.159800

  18. Bouissou, M., Bon, J.-L.: A new formalism that combines advantages of fault-trees and Markov models: boolean logic-driven Markov processes. Reliab. Eng. Syst. Safe. 82(2), 149–163 (2003). Elsevier. https://doi.org/10.1016/S0951-8320(03)00143-1

  19. Lisnianski, A., Levitin, G.: Multi-State System Reliability. World Scientific. London, England (2003). ISBN 981-238-306-9

    Google Scholar 

  20. Papadopoulos, Y., Martin, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., Grätz, U., Liend, R.: An approach to optimization of fault tolerant architectures using HiP-HOPS. J. Eng. Fail. Anal. 18(2), 590–608 (2011). Elsevier Science. https://doi.org/10.1016/j.engfailanal.2010.09.025

  21. Zaitseva, E., Levashenko, V.: Reliability analysis of multi-state system with application of multiple-valued logic. Int. J. Qual. Reliab. Manage. 34(6), 862–878 (2017). Emerald Publishing. https://doi.org/10.1108/IJQRM-06-2016-0081

  22. Signoret, J.-P., Dutuit, Y., Cacheux, J.-P., Folleau, C., Collas, S., Thomas, P.: Make your Petri nets understandable: reliability block diagrams driven Petri nets. Reliab. Eng. Syst. Safe. 113, 61–75 (2013). Elsevier. doi:https://doi.org/10.1016/j.ress.2012.12.008

  23. Bouissou, M., Bouhadana, H., Bannelier, M., Villatte, N.: Knowledge modeling and reliability processing: presentation of the FIGARO language and of associated tools. In: Proceedings of SAFECOMP'91, IFAC International Conference on Safety of Computer Control Systems, Lindeberg, J.F. (ed.). Pergamon Press, Trondheim, Norway, pp. 69–75 (1991). ISBN 0-08-041697-7

    Google Scholar 

  24. Batteux, M., Prosvirnova, T., Rauzy, A.: AltaRica 3.0 in 10 modeling patterns. Int. J. Crit. Comput.-Based Syst. 9(1–2), 133–165 (2019). Inderscience Publishers. https://doi.org/10.1504/IJCCBS.2019.098809

  25. Rauzy, A.: Guarded transition systems: a new states/events formalism for reliability studies. J. Risk Reliab. 222(4), 495–505 (2008).Professional Engineering Publishing. https://doi.org/10.1243/1748006XJRR177

  26. Batteux, M., Prosvirnova, T., Rauzy, A.: AltaRica 3.0 assertions: the why and the wherefore. J. Risk Reliab. (2017). Professional Engineering Publishing. https://doi.org/10.1177/1748006X17728209

  27. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag, New-York (1998). ISBN 978-0387947754

    Google Scholar 

  28. Noble, J., Taivalsaari, A., Moore, I.: Prototype-Based Programming: Concepts, Languages and Applications. Springer-Verlag, Berlin and Heidelberg (1999). ISBN 978-9814021258

    Google Scholar 

  29. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Upper Saddle River (1976). ISBN 978-0130224187

    Google Scholar 

  30. Rauzy, A.: Probabilistic Safety Analysis with XFTA. AltaRica Association, Les Essarts le Roi (2020). ISBN 978-82-692273-0-7

    Google Scholar 

  31. Rauzy, A., Yang, L.: Finite degradation structures. J. Appl. Log. IfCoLog J. Log. Appl. 6(7), 1471–1495 (2019). College Publications

    Google Scholar 

  32. Klee, H., Allen, R.: Simulation of Dynamic Systems with MATLAB and Simulink. CRC Press, Boca Raton (2011). ISBN 978-1439836736

    Google Scholar 

  33. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach. Wiley-IEEE Press, Hoboken (2015). ISBN 978-1118859124

    Google Scholar 

  34. Voirin, J.-L.: Method and tools for constrained system architecting. In: Proceedings 18th Annual International Symposium of the International Council on Systems Engineering (INCOSE 2008). Curran Associates, Inc., pp. 775–789, Utrecht, The Netherlands (2008). ISBN 978-1605604473

    Google Scholar 

  35. Batteux, M., Prosvirnova, T., Rauzy, A., Yang, L.: Reliability assessment of phased-mission systems with AltaRica 3.0. In: Proceedings of the 3rd International Conference on System Reliability and Safety (ICSRS), Barcelona, Spain, November 2018, pp. 400–407. IEEE. https://doi.org/10.1109/ICSRS.2018.00072

  36. Batteux, M., Prosvirnova, T., Rauzy, A.: Abstract Executions of Stochastic Discrete Event Systems (2020)

    Google Scholar 

  37. Prosvirnova, T., Rauzy, A.: Automated generation of minimal cutsets from AltaRica 3.0 models. Int. J. Crit. Comput. Based Syst. 6(1), 50–79 (2015). Inderscience Publishers. https://doi.org/10.1504/IJCCBS.2015.068852

  38. Brameret, P.-A., Rauzy, A., Roussel, J.-M.: Automated generation of partial Markov chain from high level descriptions. Reliab. Eng. Syst. Safe. 139, 179–187 (2015). Elsevier. https://doi.org/10.1016/j.ress.2015.02.009

  39. Rauzy, A.: An experimental study on six algorithms to compute transient solutions of large Markov systems. Reliab. Eng. Syst. Safe. 86(1), 105–115 (2004). Elsevier

    Google Scholar 

  40. Zio, E.: The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Springer, London (2013). ISBN 978-1-4471-4587-5

    Google Scholar 

  41. Fuhrmann, H.A.L.: On the Pragmatics of Graphical Modeling. Norderstedt, Germany (2011). ISBN 978-384480084

    Google Scholar 

  42. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison Wesley, Boston (2005). ISBN 978-0321267979

    Google Scholar 

  43. Maier, M.W.: The Art of Systems Architecting. CRC Press, Boca Raton (2009)

    Google Scholar 

  44. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns—Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston (1994). ISBN 978-0201633610

    Google Scholar 

  45. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Google Scholar 

  46. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991)

    Google Scholar 

  47. Simon, H.: Models of Man: Social and Rational. Mathematical Essays on Rational Behavior in a Social Setting. Wiley, New York (1957)

    Google Scholar 

  48. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. Wiley Period. 1(4), 267–284 (1998). https://doi.org/10.1002/j.2334-5837.1996.tb02054.x

  49. Kloul, L., Prosvirnova, T., Rauzy, A.: Modeling systems with mobile components: a comparison between AltaRica and PEPA nets. J. Risk Reliab. 227(6), 599–613 (2013). Professional Engineering Publishing. https://doi.org/10.1177/1748006X13490497

  50. Jensen, K.: Coloured Petri Nets. Springer-Verlag, Berlin (2014). ISBN ISBN-10: 364242581X. ISBN-13: 978-3642425813

    Google Scholar 

  51. Milner, R.: Communicating and Mobile Systems: The pi-Calculus. Cambridge University Press, Cambridge (1999). ISBN 978-0521658690

    Google Scholar 

  52. Railsback, S., Grimm, V.: Agent-Based and Individual-Based Modeling—A Practical Introduction. Princeton University Press, Princeton (2011). ISBN 978-0691136745

    Google Scholar 

  53. Esperza, J.: Decidability and Complexity of Petri Nets Problems—An introduction. Lectures on Petri Nets I: Basic Models, pp. 374–428. In: Reisig, W., Rozenberg, G. (eds.). Springer (1998). ISBN 3-540-65306-6

    Google Scholar 

  54. Stark, J.: Product Lifecycle Management: 21st Century Paradigm for Product Realisation, 2nd edn. Springer, London (2011). ISBN 978-0857295453

    Google Scholar 

  55. Datta, S.: Emergence of Digital Twins (2015). https://dspace.mit.edu/handle/1721.1/104429

  56. Mainini, L., Maggiore, P.: Multidisciplinary integrated framework for the optimal design of a jet aircraft wing. Int. J. Aerosp. Eng. (2012). Hindawi Publishing Corporation. https://doi.org/10.1155/2012/750642

  57. Ptolemaeus, C.: System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org (2014). ISBN 978-130442106. http://ptolemy.org/books/Systems

  58. IEC: International IEC Standard IEC61508—Functional Safety of Electrical/Electronic/Programmable Safety-related Systems (E/E/PE, or E/E/PES). International Electrotechnical Commission, Geneva, Switzerland (2010). ISBN ISBN 978-2-88910-524-3

    Google Scholar 

  59. IEC: International IEC Standard IEC61511—Functional Safety—Safety Instrumented Systems for the Process Industry Sector. International Electrotechnical Commission, Geneva, Switzerland (2016). ISBN 978-2-8322-4752-5

    Google Scholar 

  60. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 238–252 (1977). ACM Press, New York, NY, USA

    Google Scholar 

  61. Legendre, A., Lanusse, A., Rauzy, A.: Directions towards supporting synergies between design and probabilistic safety assessment activities: illustration on a fire detection system embedded in a helicopter. In: Proceedings PSAM'13, IPSAM, Seoul, South-Korea (2016)

    Google Scholar 

  62. Batteux, M., Prosvirnova, T., Rauzy, A.: Model Synchronization: A Formal Framework for the Management of Heterogeneous Models. Model-Based Safety and Assessment. In: Papadopoulos, Y., Aslansefat, K., Katsaros, p., Bozzano, M. (eds.), pp. 157–172. Springer, Thessaloniki, Greece. ISBN 978-3-030-32871-9

    Google Scholar 

  63. Batteux, M., Choley, J.-Y., Mhenni, F., Prosvirnova, T., Rauzy, A.: Synchronization of system architecture and safety models: a proof of concept. In: Proceedings of the IEEE 2019 International Symposium on Systems Engineering (ISSE), IEEE, Edinburgh, Scotland (2019)

    Google Scholar 

  64. O'Regan, G.: Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications. Springer, Cham, Switzerland (2016). ISBN ISBN 978-3319445601

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Rauzy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauzy, A. (2021). New Challenges and Opportunities in Reliability Engineering of Complex Technical Systems. In: van Gulijk, C., Zaitseva, E. (eds) Reliability Engineering and Computational Intelligence. Studies in Computational Intelligence, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-030-74556-1_6

Download citation

Publish with us

Policies and ethics