Skip to main content

Knowledge-Based Multispectral Remote Sensing Imagery Superresolution

  • Chapter
  • First Online:
Reliability Engineering and Computational Intelligence

Abstract

Software techniques for remotely sensed imagery superresolution enhance data reliability and veracity. The most common approach for superresolution is the processing of few images of the same scene captured simultaneously with subpixel shift relatively to each other. These conditions exclude radiometric inconsistency between images, and subpixel shift allow the extracting of additional land surface details. A general superresolution approach can be adopted to multispectral remote sensing imagery registered in different spectral bands. In this case, the intrinsic radiometric inconsistency can be overpassed by translating of the input bands into some additional virtual one, joint for all inputs. Typically, such an additional band overlaps all input ones in the spectrum. Necessary knowledge for bands translation are all bands spectral responses, as well as the subpixel shifts between restored images. So, the spectral radiance for a new spectral band is estimated. Therefore, each input band image transforms into new image in the same spectral range. Obtained images are appropriate for any existing superresolution techniques, for example, using Gaussian regularization in the frequency domain. The last step of the proposed method is image improvement after superresolution using a convolutional artificial neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kokhan, S.S.: Application of multispectral remotely sensed imagery in agriculture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII, part 7B, pp. 337−341 (2010)

    Google Scholar 

  2. Burciu, Z., Abramowicz-Gerigk, T., Przybyl, W., Plebankiewicz, I., Januszko, A.: The impact of the improved search object detection on the SAR action success probability in maritime transport. Sensors 20, 3962 (2020)

    Article  Google Scholar 

  3. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  4. Stankevich, S.A.: Quantitative analysis of informativeness of hyperspectral aerospace imagery in solving thematic tasks of Earth remote sensing (in Ukrainian). Rep. NAS Ukraine 10, 136–139 (2006)

    Google Scholar 

  5. Stankevich, S., Piestova, I., Shklyar, S., Lysenko, A.: Satellite dual-polarization radar imagery superresolution under physical constraints. In: Shakhovska, N., Medykovskyy, M.O. (eds.) Advances in Intelligent Systems and Computing IV, vol. 1080, pp. 439–452. Springer, Cham (2020)

    Chapter  Google Scholar 

  6. Piestova, I.O., Stankevich, S.A., Kostolny, J.: Multispectral imagery super-resolution with logical reallocation of spectra. In: Proceedings of the International Conference on Information and Digital Technologies, pp. 322–326. Zilina, Slovakia (2017)

    Google Scholar 

  7. Zaitseva, E., Levashenko, V.: Construction of a reliability structure function based on uncertain data. IEEE Trans. Reliab. 65(4), 1710–1723 (2016)

    Article  Google Scholar 

  8. Stankevich, S.A., Andreiev, A.A., Lysenko, A.R.: Multiframe remote sensed imagery superresolution. In: Proceedings of the 15th International Scientific-Practical Conference on Mathematical Modeling and Simulation Systems (MODS 2020). Chernihiv National University of Technology, Chernihiv, Ukraine (2020)

    Google Scholar 

  9. Rukundo, O., Cao, H.: Nearest neighbor value interpolation. Int. J. Adv. Comput. Sci. Appl. 3(4), 25–30 (2012)

    Google Scholar 

  10. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  Google Scholar 

  11. Stankevich, S.A., Shklyar, S.V., Podorvan, V.N., Lubskyi, N.S.: Thermal infrared imagery informativity enhancement using sub-pixel co-registration. In: Proceedings of the 2016 International Conference on Information and Digital Technologies, pp. 245–248. Rzeszow, Poland (2016)

    Google Scholar 

  12. Asokan, A., Anitha, J.: Lifting wavelet and discrete cosine transform-based super-resolution for satellite image fusion. In: Singh, V., Asari, V., Kumar, S., Patel, R. (eds.) Computational Methods and Data Engineering. Advances in Intelligent Systems and Computing, vol. 1227. Springer, Singapore (2021)

    Google Scholar 

  13. Basha, S.A., Vijayakumar, V.: Wavelet transform based satellite image enhancement. J. Eng. Appl. Sci. 13(4), 854–856 (2018)

    Google Scholar 

  14. Stankevich, S.A., Popov, M.O., Shklyar, S.V., Sukhanov, K.Y., Andreiev, A.A., Lysenko, A.R., Kun, X., Cao, S., Yupan, S., Boya, S.: Estimation of mutual subpixel shift between satellite images: software implementation. Ukr. J. Remote Sens. 24, 9–14 (2020)

    Article  Google Scholar 

  15. Sekrecka, A., Kedzierski, M., Wierzbicki, D.: Pre-processing of panchromatic images to improve object detection in pansharpened images. Sensors 19(23), 5146–5172 (2019)

    Article  Google Scholar 

  16. Aiazzi, B., Baronti, S., Selva, M.: Image fusion through multiresolution oversampled decompositions. In: Stathaki, T. (ed.) Image Fusion: Algorithms and Applications, pp. 27–66. Academic Press (2008)

    Google Scholar 

  17. Gonzalez-Audicana, M., Saleta, J. L., Catalan, R. G., Garcia, R.: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 6(42), 1291–1299 (2004)

    Google Scholar 

  18. Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., Czapla-Myers, J., Mishra, N., Helder, D.: Landsat-8 Operational Land Imager radiometric calibration and stability. Remote Sens. 6, 12275–12308 (2014)

    Google Scholar 

  19. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super–resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  20. Patil, V.H., Bormane, D.S.: Interpolation for super resolution imaging. In: Sobh, T. (ed.) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering, pp. 483–489. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  21. Lyalko, V.I., Popov, M.A., Stankevich, S.A., Shklayr, S.V., Podorvan, V.N.: Prototype of satellite infrared spectroradiometer with superresolution. J. Inf. Control Manage. Syst. 2(12), 153–164 (2014)

    Google Scholar 

  22. Stone, H.S., Orchard, M.T., Chang, E.-C., Martucci, S.A.: A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens 39(10), 2235–2243 (2001)

    Article  Google Scholar 

  23. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla T., Schiele B., Tuytelaars T. (eds.) Computer Vision, Lecture Notes in Computer Science, vol. 8692. Springer, Cham (2014)

    Google Scholar 

  24. Lim, B., Son, S., Kim, H., Nah, S., Lee, K. M.: Enhanced deep residual networks for single image super-resolution. In: 2017 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1132–1140. Honolulu, HI, USA (2017)

    Google Scholar 

  25. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547. Venice, Italy (2017)

    Google Scholar 

  26. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision—ECCV 2018. Lecture Notes in Computer Science, vol. 11211, pp. 286–301. Springer, Cham (2018)

    Google Scholar 

  27. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2472–2481. Salt Lake City, UT, USA (2018)

    Google Scholar 

  28. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Loy, C.C.: ESRGAN: enhanced super-resolution generative adversarial networks. In Computer Vision – ECCV 2018 Workshops. Munich, Germany (2019)

    Google Scholar 

  29. Zhang, R., Zhang, X., Gong, Z., Ji, X., Luo, S.: Fusion image quality assessment based on modulation transfer function. In: Proceedings of IEEE International Symposium on Image and Data Fusion, pp. 1–5. Tengchong, Yunnan, China (2011)

    Google Scholar 

  30. Seshadrinathan, K., Pappas, T.N., Safranek, R.J., Chen, J., Wang, R. Sheikh, H.R., Bovik, A.C.: Image quality assessment. In: The Essential Guide to Image Processing, pp. 553–595. Academic Press, San Diego (2009)

    Google Scholar 

  31. Kang, J., Hao, Q., Cheng, X.: Measurement and comparison of one- and two-dimensional modulation transfer function of optical imaging systems based on the random target method. Opt. Eng. 53(10), 8 (2014)

    Google Scholar 

  32. Li, T., Feng, H.: Comparison of different analytical edge spread function models for MTF calculation using curve-fitting. Proc. SPIE. 7498, 74981H, 8 (2009)

    Google Scholar 

  33. Becker, S., Haala, N.: Determination and improvement of spatial resolution for digital aerial images. ISPRS Arch. XXXVI, 1/W3, 6 (2005)

    Google Scholar 

  34. Viallefont-Robinet, F., Helder, D., Fraisse, R., Newbury, A., van den Bergh, F., Lee, D.H., Saunier, S.: Comparison of MTF measurements using edge method: towards reference data set. Opt. Express 26(26), 33625–33648 (2018)

    Article  Google Scholar 

  35. Stankevich, S.A.: Evaluation of the spatial resolution of digital aerospace image by the bidirectional point spread function parameterization. In: Shkarlet, S., Morozov, A., Palagin, A. (eds.) Advances in Intelligent Systems and Computing, vol. 1265, pp. 317–327. Springer Nature, Cham (2021)

    Google Scholar 

  36. Levashenko, V., Zaitseva, E., Puurinen S.: Fuzzy classifier based on fuzzy decision tree. In: Proceedings of EUROCON 2007 The International Conference on Computer as a Tool 2007, pp. 823–827

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the grant No. SK-SRB-18-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Stankevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stankevich, S.A. et al. (2021). Knowledge-Based Multispectral Remote Sensing Imagery Superresolution. In: van Gulijk, C., Zaitseva, E. (eds) Reliability Engineering and Computational Intelligence. Studies in Computational Intelligence, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-030-74556-1_13

Download citation

Publish with us

Policies and ethics