Skip to main content

Developmental Patterns of Students’ Understanding of Core Concepts in Secondary School Chemistry

  • Chapter
  • First Online:
Book cover Engaging with Contemporary Challenges through Science Education Research

Part of the book series: Contributions from Science Education Research ((CFSE,volume 9))

  • 640 Accesses

Abstract

A central goal of chemistry education is to enable students to gain a broad understanding of central chemical concepts. To support students in achieving this goal, theoretically grounded and empirically validated models of developmental trajectories are needed to inform instruction and to guide assessment. However, it is an ongoing debate how these developmental trajectories need to be formulated and how evidence to support these trajectories can be established. In a longitudinal study covering students’ understanding of three chemical concepts in grades 5 to 8 and 9 to 12, respectively, we aim to investigate how different approaches to analyse students’ responses to test items lead to diverging conclusions regarding developmental patterns across grades. Overall, students’ test scores indicate substantial learning gains from grade to grade, with small to medium effect sizes. In addition, students’ progression across grades on average follows the hierarchy of ordered levels of conceptual understanding that were used for the development of the test items. However, a more fine-grained analysis focusing on individual trajectories calls the assumption of a level-by-level development of individual students into question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M. (2010). Learner error, affectual stimulation, and conceptual change. Journal of Research in Science Teaching, 47(1), 151–173. https://doi.org/10.1002/tea.20302

    Article  Google Scholar 

  • Alonzo, A. C., & Gotwals, A. W. (Eds.). (2012). Learning progressions in science: Current challenges and future directions. Sense Publishers.

    Google Scholar 

  • Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389–421. https://doi.org/10.1002/sce.20303

    Article  Google Scholar 

  • Amaral, E. M. R. D., Ratis Tenório da Silva, J. R., & Sabino, J. D. (2018). Analysing processes of conceptualization for students in lessons on substance from the emergence of conceptual profile zones. Chemistry Education Research and Practice, 19(4), 1010–1028. https://doi.org/10.1039/C8RP00050F

    Article  Google Scholar 

  • Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12–16). Studies in Science Education, 18(1), 53–85. https://doi.org/10.1080/03057269008559981

    Article  Google Scholar 

  • Bernholt, S., & Sevian, H. (2018). Learning progressions and teaching sequences – Old wine in new skins? Chemistry Education Research and Practice, 19(4), 989–997. https://doi.org/10.1039/C8RP90009D

    Article  Google Scholar 

  • Bernholt, S., Neumann, K., & Nentwig, P. (Eds.). (2012). Making it tangible – Learning outcomes in science education. Waxmann.

    Google Scholar 

  • Bernholt, S., Höft, L., & Parchmann, I. (2020). Die Entwicklung fachlicher Basiskonzepte im Chemieunterricht – Findet ein kumulativer Aufbau im Kompetenzbereich Fachwissen statt? Unterrichtswissenschaft, 48(1), 35–59. https://doi.org/10.1007/s42010-019-00065-4

    Article  Google Scholar 

  • Bloom, H. S., Hill, C. J., Black, A. R., & Lipsey, M. W. (2008). Performance trajectories and performance gaps as achievement effect-size benchmarks for educational interventions. Journal of Research on Educational Effectiveness, 1(4), 289–328. https://doi.org/10.1080/19345740802400072

    Article  Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience and school. National Academy Press.

    Google Scholar 

  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33–63. https://doi.org/10.1207/s15326977ea1101_2

    Article  Google Scholar 

  • Chen, J., Gotwals, A. W., Anderson, C. W., & Reckase, M. D. (2016). The influence of item formats when locating a student on a learning progression in science. International Journal of Assessment Tools in Education, 3(2), 101–122. https://doi.org/10.21449/ijate.245196

    Article  Google Scholar 

  • DiSessa, A. A., & Wagner, J. F. (2006). What coordination has to say about transfer. In J. P. Mestre (Ed.), Current perspectives on cognition, learning, and instruction. Transfer of learning from a modern multidisciplinary perspective (pp. 121–154). IAP.

    Google Scholar 

  • Duit, R., & Treagust, D. (1998). Learning in science: From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 3–25). Kluwer.

    Chapter  Google Scholar 

  • Duncan, R. G., & Gotwals, A. W. (2015). A tale of two progressions: On the benefits of careful comparisons. Science Education, 99(3), 410–416. https://doi.org/10.1002/sce.21167

    Article  Google Scholar 

  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in Grades K-8. Nation Academic Press.

    Google Scholar 

  • Duschl, R. A., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123–182. https://doi.org/10.1080/03057267.2011.604476

    Article  Google Scholar 

  • Emden, M., Weber, K., & Sumfleth, E. (2018). Evaluating a learning progression on ‘Transformation of Matter’ on the lower secondary level. Chemistry Education Research and Practice, 19(4), 1096–1116. https://doi.org/10.1039/C8RP00137E

    Article  Google Scholar 

  • Fischer, K. W., & Bidell, T. R. (2006). Dynamic development of action, thought, and emotion. In W. Damon & R. M. Lerner (Eds.), Theoretical models of human development. Handbook of child psychology (6th ed., pp. 313–399). Wiley.

    Google Scholar 

  • Ford, M. J. (2015). Learning progressions and Progress: An introduction to our focus on learning progressions. Science Education, 99(3), 407–409. https://doi.org/10.1002/sce.21169

    Article  Google Scholar 

  • Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25(1), 69–96. https://doi.org/10.1080/03057269508560050

    Article  Google Scholar 

  • Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations (ETS Research Report: ETS RR-09-40). ETS.

    Book  Google Scholar 

  • Hadenfeldt, J. C., Bernholt, S., Liu, X., Neumann, K., & Parchmann, I. (2013). Using ordered multiple-choice items to assess students’ understanding of the structure and composition of matter. Journal of Chemical Education, 90(12), 1602–1608. https://doi.org/10.1021/ed3006192

    Article  Google Scholar 

  • Hadenfeldt, J. C., Liu, X., & Neumann, K. (2014). Framing students’ progression in understanding matter: A review of previous research. Studies in Science Education, 50(2), 181–208. https://doi.org/10.1080/03057267.2014.945829

    Article  Google Scholar 

  • Hadenfeldt, J. C., Neumann, K., Bernholt, S., Liu, X., & Parchmann, I. (2016). Students’ progression in understanding the matter concept. Journal of Research in Science Teaching, 53(5), 683–708. https://doi.org/10.1002/tea.21312

    Article  Google Scholar 

  • Hu, L.-t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

    Article  Google Scholar 

  • KMK. (2004). Bildungsstandards im Fach Chemie für den mittleren Schulabschluss. Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland.

    Google Scholar 

  • Krajcik, J. S., Sutherland, L. M., Drago, K., & Merritt, J. (2012). The promise and value of learning progression research. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible – Learning outcomes in science education (pp. 261–283). Waxmann.

    Google Scholar 

  • Little, T. D., Schnabel, K. U., & Baumert, J. (Eds.). (2014). Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples. Psychology Press.

    Google Scholar 

  • Liu, X., & Lesniak, K. (2006). Progression in children’s understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching, 43(3), 320–347. https://doi.org/10.1002/tea.20114

    Article  Google Scholar 

  • Löfgren, L., & Helldén, G. (2009). A longitudinal study showing how students use a molecule concept when explaining everyday situations. International Journal of Science Education, 31(12), 1631–1655. https://doi.org/10.1080/09500690802154850

    Article  Google Scholar 

  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2012). Towards a learning progression of energy. Journal of Research in Science Teaching, 50, 162–188. https://doi.org/10.1002/tea.21061

    Article  Google Scholar 

  • Sevian, H., & Couture, S. (2018). Epistemic games in substance characterization. Chemistry Education Research and Practice, 19(4), 1029–1054. https://doi.org/10.1039/C8RP00047F

    Article  Google Scholar 

  • Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid interpretations of learning progression level diagnoses. Journal of Research in Science Teaching, 46(6), 699–715. https://doi.org/10.1002/tea.20308

    Article  Google Scholar 

  • Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715. https://doi.org/10.1002/tea.20324

    Article  Google Scholar 

  • Steyer, R., Partchev, I., & Shanahan, M. J. (2014). Modeling true intraindividual change in structural equation models: The case of poverty and children’s psychological adjustment. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples. Psychology Press.

    Google Scholar 

  • Taber, K. S. (2017). Researching moving targets: Studying learning progressions and teaching sequences. Chemistry Education Research and Practice, 18(2), 283–287. https://doi.org/10.1039/C7RP90003A

    Article  Google Scholar 

  • Wright, B. D., & Linacre, M. J. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8(3), 370.

    Google Scholar 

  • Yan, F., & Talanquer, V. (2016). Students’ ideas about how and why chemical reactions happen: Mapping the conceptual landscape. International Journal of Science Education, 37(18), 3066–3092. https://doi.org/10.1080/09500693.2015.1121414

    Article  Google Scholar 

  • Zabel, J., & Gropengiesser, H. (2011). Learning progress in evolution theory: Climbing a ladder or roaming a landscape? Journal of Biological Education, 45(3), 143–149. https://doi.org/10.1080/00219266.2011.586714

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the Swedish Research Council under grant number 721-2013-2180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Bernholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernholt, S., Höft, L. (2021). Developmental Patterns of Students’ Understanding of Core Concepts in Secondary School Chemistry. In: Levrini, O., Tasquier, G., Amin, T.G., Branchetti, L., Levin, M. (eds) Engaging with Contemporary Challenges through Science Education Research. Contributions from Science Education Research, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-74490-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74490-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74489-2

  • Online ISBN: 978-3-030-74490-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics