Skip to main content

Pheochromocytoma and Paraganglioma

  • Chapter
  • First Online:
The Hereditary Basis of Childhood Cancer

Abstract

Pheochromocytoma (PCC) and paraganglioma (PGL) are neuroendocrine tumors that originate in the neural crest. While PCCs develop from chromaffin cells in the adrenal medulla, PGLs develop either from paraganglia in the sympathetic nervous system (and are distributed symmetrically along the entire paravertebral axis from the neck to the pelvis, giving rise to thoracic and abdominal/retroperitoneal PGL) or more rarely from parasympathetic paraganglia (giving rise to head and neck PGL and rarely thoracic PGL). PCCs/PGLs have the highest heritability of all human neoplasms being a good example of diseases with underlying genetic heterogeneity. In this regard, at least 40% of PCC/PGL patients carry a germline mutation in 1 of the 19 genes described so far as related to the disease. In addition to the complexity of the genetics of PCC/PGL, we need to consider the role of somatic mutations, which to date have been identified up to 30–35% of tumors. The latter have been observed to occur not only in the same genes involved in heritable susceptibility but also in the new ones, which have thus recently emerged as key players in the sporadic presentation of these diseases. Despite the increasing proportion of patients already explained by germline or somatic genetic defects, there are still patients with clinical indicators of hereditary disease (i.e., family history, multiple tumors, and/or young age of onset) without a molecular diagnosis, which are being actively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaltsas, G. A., Papadogias, D., & Grossman, A. B. (2004). The clinical presentation (symptoms and signs) of sporadic and familial chromaffin cell tumours (phaeochromocytomas and paragangliomas). Frontiers of Hormone Research, 31, 61–75. https://doi.org/10.1159/000074658

    Article  PubMed  Google Scholar 

  2. Waguespack, S. G., Rich, T., Grubbs, E., Ying, A. K., Perrier, N. D., Ayala-Ramirez, M., & Jimenez, C. (2010). A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. The Journal of Clinical Endocrinology and Metabolism, 95, 2023–2037. https://doi.org/10.1210/jc.2009-2830

    Article  CAS  PubMed  Google Scholar 

  3. Pacak, K., Lenders, J. W. M., & Eisenhofer, G. (2007). Pheochromocytoma : diagnosis, localization, and treatment (p. vi). Blackwell Pub.. 172 p.

    Book  Google Scholar 

  4. Koch, C. A., Vortmeyer, A. O., Huang, S. C., Alesci, S., Zhuang, Z., & Pacak, K. (2001). Genetic aspects of pheochromocytoma. Endocrine Regulations, 35, 43–52.

    CAS  PubMed  Google Scholar 

  5. Wyszynska, T., Cichocka, E., Wieteska-Klimczak, A., Jobs, K., & Januszewicz, P. (1992). A single pediatric center experience with 1025 children with hypertension. Acta Paediatrica, 81, 244–246. https://doi.org/10.1111/j.1651-2227.1992.tb12213.x

    Article  CAS  PubMed  Google Scholar 

  6. Jochmanova, I., Abcede, A. M. T., Guerrero, R. J. S., Malong, C. L. P., Wesley, R., Huynh, T., Gonzales, M. K., Wolf, K. I., Jha, A., Knue, M., et al. (2020). Clinical characteristics and outcomes of SDHB-related pheochromocytoma and paraganglioma in children and adolescents. Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-020-03138-5

  7. King, K. S., Prodanov, T., Kantorovich, V., Fojo, T., Hewitt, J. K., Zacharin, M., Wesley, R., Lodish, M., Raygada, M., Gimenez-Roqueplo, A. P., et al. (2011). Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: Significant link to SDHB mutations. Journal of Clinical Oncology, 29, 4137–4142. https://doi.org/10.1200/JCO.2011.34.6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hafez, R. F., Morgan, M. S., & Fahmy, O. M. (2016). An intermediate term benefits and complications of gamma knife surgery in management of glomus jugulare tumor. World Journal of Surgical Oncology, 14, 36. https://doi.org/10.1186/s12957-016-0779-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Darr, R., Lenders, J. W., Hofbauer, L. C., Naumann, B., Bornstein, S. R., & Eisenhofer, G. (2012). Pheochromocytoma—update on disease management. Therapeutic Advances in Endocrinology and Metabolism, 3, 11–26. https://doi.org/10.1177/2042018812437356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goffredo, P., Sosa, J. A., & Roman, S. A. (2013). Malignant pheochromocytoma and paraganglioma: A population level analysis of long-term survival over two decades. Journal of Surgical Oncology, 107, 659–664. https://doi.org/10.1002/jso.23297

    Article  PubMed  Google Scholar 

  11. Hescot, S., Curras-Freixes, M., Deutschbein, T., van Berkel, A., Vezzosi, D., Amar, L., de la Fouchardiere, C., Valdes, N., Riccardi, F., Do Cao, C., et al. (2019). Prognosis of malignant pheochromocytoma and paraganglioma (MAPP-Prono study): A European Network for the study of adrenal tumors retrospective study. The Journal of Clinical Endocrinology and Metabolism, 104, 2367–2374. https://doi.org/10.1210/jc.2018-01968

    Article  PubMed  Google Scholar 

  12. Crona, J., Taieb, D., & Pacak, K. (2017). New perspectives on pheochromocytoma and paraganglioma: Toward a molecular classification. Endocrine Reviews, 38, 489–515. https://doi.org/10.1210/er.2017-00062

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, H., Sippel, R. S., O'Dorisio, M. S., Vinik, A. I., Lloyd, R. V., Pacak, K., & North American Neuroendocrine Tumor, S. (2010). The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas, 39, 775–783. https://doi.org/10.1097/MPA.0b013e3181ebb4f0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barontini, M., Levin, G., & Sanso, G. (2006). Characteristics of pheochromocytoma in a 4- to 20-year-old population. Annals of the New York Academy of Sciences, 1073, 30–37. https://doi.org/10.1196/annals.1353.003

    Article  PubMed  Google Scholar 

  15. Eisenhofer, G., Keiser, H., Friberg, P., Mezey, E., Huynh, T. T., Hiremagalur, B., Ellingson, T., Duddempudi, S., Eijsbouts, A., & Lenders, J. W. (1998). Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors. The Journal of Clinical Endocrinology and Metabolism, 83, 2175–2185. https://doi.org/10.1210/jcem.83.6.4870

    Article  CAS  PubMed  Google Scholar 

  16. Havekes, B., Romijn, J. A., Eisenhofer, G., Adams, K., & Pacak, K. (2009). Update on pediatric pheochromocytoma. Pediatric Nephrology, 24, 943–950. https://doi.org/10.1007/s00467-008-0888-9

    Article  PubMed  Google Scholar 

  17. de Jong, W. H., Eisenhofer, G., Post, W. J., Muskiet, F. A., de Vries, E. G., & Kema, I. P. (2009). Dietary influences on plasma and urinary metanephrines: Implications for diagnosis of catecholamine-producing tumors. The Journal of Clinical Endocrinology and Metabolism, 94, 2841–2849. https://doi.org/10.1210/jc.2009-0303

    Article  CAS  PubMed  Google Scholar 

  18. Eisenhofer, G., Goldstein, D. S., Walther, M. M., Friberg, P., Lenders, J. W., Keiser, H. R., & Pacak, K. (2003). Biochemical diagnosis of pheochromocytoma: How to distinguish true- from false-positive test results. The Journal of Clinical Endocrinology and Metabolism, 88, 2656–2666. https://doi.org/10.1210/jc.2002-030005

    Article  CAS  PubMed  Google Scholar 

  19. Bholah, R., & Bunchman, T. E. (2017). Review of pediatric pheochromocytoma and paraganglioma. Frontiers in Pediatrics, 5, 155. https://doi.org/10.3389/fped.2017.00155

    Article  PubMed  PubMed Central  Google Scholar 

  20. Young, W. F., Jr. (2006). Paragangliomas: clinical overview. Annals of the New York Academy of Sciences, 1073, 21–29. https://doi.org/10.1196/annals.1353.002. 1073/1/21 [pii].

    Article  CAS  PubMed  Google Scholar 

  21. Hu, K., & Persky, M. S. (2003). Multidisciplinary management of paragangliomas of the head and neck, part 1. Oncology (Williston Park), 17, 983–993.

    Google Scholar 

  22. Jha, A., Ling, A., Millo, C., Gupta, G., Viana, B., Lin, F. I., Herscovitch, P., Adams, K. T., Taieb, D., Metwalli, A. R., et al. (2018). Superiority of (68)Ga-DOTATATE over (18)F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx )-related pheochromocytoma and paraganglioma in the pediatric population. European Journal of Nuclear Medicine and Molecular Imaging, 45, 787–797. https://doi.org/10.1007/s00259-017-3896-9

    Article  CAS  PubMed  Google Scholar 

  23. Mannelli, M., Castellano, M., Schiavi, F., Filetti, S., Giacche, M., Mori, L., Pignataro, V., Bernini, G., Giache, V., Bacca, A., et al. (2009). Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or non-functional paragangliomas. The Journal of Clinical Endocrinology and Metabolism, 94, 1541–1547.

    Article  CAS  Google Scholar 

  24. Cascon, A., Pita, G., Burnichon, N., Landa, I., Lopez-Jimenez, E., Montero-Conde, C., Leskela, S., Leandro-Garcia, L. J., Leton, R., Rodriguez-Antona, C., et al. (2009). Genetics of pheochromocytoma and paraganglioma in Spanish patients. The Journal of Clinical Endocrinology and Metabolism, 94, 1701–1705. https://doi.org/10.1210/jc.2008-2756

    Article  CAS  PubMed  Google Scholar 

  25. Welander, J., Soderkvist, P., & Gimm, O. (2011). Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer, 18, R253–R276., ERC-11-0170 [pii]. https://doi.org/10.1530/ERC-11-0170

    Article  CAS  PubMed  Google Scholar 

  26. Cascon, A., Inglada-Perez, L., Comino-Mendez, I., de Cubas, A. A., Leton, R., Mora, J., Marazuela, M., Galofre, J. C., Quesada-Charneco, M., & Robledo, M. (2013). Genetics of pheochromocytoma and paraganglioma in Spanish pediatric patients. Endocrine-Related Cancer, 20, L1–L6. https://doi.org/10.1530/ERC-12-0339

    Article  CAS  PubMed  Google Scholar 

  27. Comino-Mendez, I., de Cubas, A. A., Bernal, C., Alvarez-Escola, C., Sanchez-Malo, C., Ramirez-Tortosa, C. L., Pedrinaci, S., Rapizzi, E., Ercolino, T., Bernini, G., et al. (2013). Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet, 22, 2169–2176. https://doi.org/10.1093/hmg/ddt069. ddt069 [pii].

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang, Z., Yang, C., Lorenzo, F., Merino, M., Fojo, T., Kebebew, E., Popovic, V., Stratakis, C. A., Prchal, J. T., & Pacak, K. (2012). Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. The New England Journal of Medicine, 367, 922–930. https://doi.org/10.1056/NEJMoa1205119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Toledo, R. A., Qin, Y., Cheng, Z. M., Gao, Q., Iwata, S., Silva, G. M., Prasad, M. L., Ocal, I. T., Rao, S., Aronin, N., et al. (2016). Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas. Clinical Cancer Research, 22, 2301–2310. https://doi.org/10.1158/1078-0432.CCR-15-1841. 1078–0432.CCR-15-1841 [pii].

    Article  CAS  PubMed  Google Scholar 

  30. de Groot, J. W., Links, T. P., Plukker, J. T., Lips, C. J., & Hofstra, R. M. (2006). RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocrine Reviews, 27, 535–560., er.2006–0017 [pii]. https://doi.org/10.1210/er.2006-0017

    Article  CAS  PubMed  Google Scholar 

  31. Kloos, R. T., Eng, C., Evans, D. B., Francis, G. L., Gagel, R. F., Gharib, H., Moley, J. F., Pacini, F., Ringel, M. D., Schlumberger, M., et al. (2009). Medullary thyroid cancer: Management guidelines of the American Thyroid Association. Thyroid, 19, 565–612. https://doi.org/10.1089/thy.2008.0403

    Article  PubMed  Google Scholar 

  32. Milos, I. N., Frank-Raue, K., Wohllk, N., Maia, A. L., Pusiol, E., Patocs, A., Robledo, M., Biarnes, J., Barontini, M., Links, T. P., et al. (2008). Age-related neoplastic risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germ line RET Cys634Trp (TGC>TGG) mutation. Endocrine-Related Cancer, 15, 1035–1041., ERC-08-0105 [pii]. https://doi.org/10.1677/ERC-08-0105

    Article  CAS  PubMed  Google Scholar 

  33. Burnichon, N., Vescovo, L., Amar, L., Libe, R., de Reynies, A., Venisse, A., Jouanno, E., Laurendeau, I., Parfait, B., Bertherat, J., et al. (2011). Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet, 20, 3974–3985. ddr324 [pii]. https://doi.org/10.1093/hmg/ddr324

    Article  CAS  PubMed  Google Scholar 

  34. Qi, X. P., Ma, J. M., Du, Z. F., Ying, R. B., Fei, J., Jin, H. Y., Han, J. S., Wang, J. Q., Chen, X. L., Chen, C. Y., et al. (2011). RET germline mutations identified by exome sequencing in a Chinese multiple endocrine neoplasia type 2A/familial medullary thyroid carcinoma family. PLoS One, 6, e20353. https://doi.org/10.1371/journal.pone.0020353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lebeault, M., Pinson, S., Guillaud-Bataille, M., Gimenez-Roqueplo, A. P., Carrie, A., Barbu, V., Pigny, P., Bezieau, S., Rey, J. M., Delvincourt, C., et al. (2017). Nationwide French Study of RET Variants Detected from 2003 to 2013 Suggests a possible influence of polymorphisms as modifiers. Thyroid, 27, 1511–1522. https://doi.org/10.1089/thy.2016.0399

    Article  CAS  PubMed  Google Scholar 

  36. Wells, S. A., Jr., Asa, S. L., Dralle, H., Elisei, R., Evans, D. B., Gagel, R. F., Lee, N., Machens, A., Moley, J. F., Pacini, F., et al. (2015). Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid, 25, 567–610. https://doi.org/10.1089/thy.2014.0335

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lonser, R. R., Glenn, G. M., Walther, M., Chew, E. Y., Libutti, S. K., Linehan, W. M., & von Oldfield, E. H. (2003). Hippel-Lindau disease. Lancet, 361, 2059–2067.

    Article  CAS  Google Scholar 

  38. Ong, K. R., Woodward, E. R., Killick, P., Lim, C., Macdonald, F., & Maher, E. R. (2007). Genotype-phenotype correlations in von Hippel-Lindau disease. Human Mutation, 28, 143–149. https://doi.org/10.1002/humu.20385

    Article  CAS  PubMed  Google Scholar 

  39. Kaelin, W. G., Jr. (2008). The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nature Reviews. Cancer, 8, 865–873.

    Article  CAS  Google Scholar 

  40. Gimm, O., Koch, C. A., Januszewicz, A., Opocher, G., & Neumann, H. P. (2004). The genetic basis of pheochromocytoma. Frontiers of Hormone Research, 31, 45–60.

    Article  CAS  Google Scholar 

  41. Eisenhofer, G., Huynh, T. T., Pacak, K., Brouwers, F. M., Walther, M. M., Linehan, W. M., Munson, P. J., Mannelli, M., Goldstein, D. S., & Elkahloun, A. G. (2004). Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer, 11, 897–911., 11/4/897 [pii]. https://doi.org/10.1677/erc.1.00838

    Article  CAS  PubMed  Google Scholar 

  42. Sgambati, M. T., Stolle, C., Choyke, P. L., Walther, M. M., Zbar, B., Linehan, W. M., & Glenn, G. M. (2000). Mosaicism in von Hippel-Lindau disease: Lessons from kindreds with germline mutations identified in offspring with mosaic parents. American Journal of Human Genetics, 66, 84–91. https://doi.org/10.1086/302726

    Article  CAS  PubMed  Google Scholar 

  43. Evans, D. G., Howard, E., Giblin, C., Clancy, T., Spencer, H., Huson, S. M., & Lalloo, F. (2010). Birth incidence and prevalence of tumor-prone syndromes: Estimates from a UK family genetic register service. American Journal of Medical Genetics. Part A, 152A, 327–332. https://doi.org/10.1002/ajmg.a.33139

    Article  CAS  PubMed  Google Scholar 

  44. Ruiz-Llorente, S., Bravo, J., Cebrian, A., Cascon, A., Pollan, M., Telleria, D., Leton, R., Urioste, M., Rodriguez-Lopez, R., de Campos, J. M., et al. (2004). Genetic characterization and structural analysis of VHL Spanish families to define genotype-phenotype correlations. Human Mutation, 23, 160–169.

    Article  CAS  Google Scholar 

  45. Neumann, H. P., Bausch, B., McWhinney, S. R., Bender, B. U., Gimm, O., Franke, G., Schipper, J., Klisch, J., Altehoefer, C., Zerres, K., et al. (2002). Germ-line mutations in nonsyndromic pheochromocytoma. The New England Journal of Medicine, 346, 1459–1466. https://doi.org/10.1056/NEJMoa020152346/19/1459. [pii].

    Article  CAS  PubMed  Google Scholar 

  46. Nielsen, S. M., Rhodes, L., Blanco, I., Chung, W. K., Eng, C., Maher, E. R., Richard, S., & Von Giles, R. H. (2016). Hippel-Lindau disease: Genetics and role of genetic Counseling in a multiple neoplasia syndrome. Journal of Clinical Oncology, 34, 2172–2181. https://doi.org/10.1200/JCO.2015.65.6140

    Article  CAS  PubMed  Google Scholar 

  47. Boyd, K. P., Korf, B. R., & Theos, A. (2009). Neurofibromatosis type 1. Journal of the American Academy of Dermatology, 61, 1–14.; quiz 15-16. https://doi.org/10.1016/j.jaad.2008.12.051

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kehrer-Sawatzki, H., & Cooper, D. N. (2008). Mosaicism in sporadic neurofibromatosis type 1: Variations on a theme common to other hereditary cancer syndromes? Journal of Medical Genetics, 45, 622–631. https://doi.org/10.1136/jmg.2008.059329

    Article  CAS  PubMed  Google Scholar 

  49. Welander, J., Larsson, C., Backdahl, M., Hareni, N., Sivler, T., Brauckhoff, M., Soderkvist, P., & Gimm, O. (2012). Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum Mol Genet, 21, 5406–5416., dds402 [pii]. https://doi.org/10.1093/hmg/dds402

    Article  CAS  PubMed  Google Scholar 

  50. Burnichon, N., Buffet, A., Parfait, B., Letouze, E., Laurendeau, I., Loriot, C., Pasmant, E., Abermil, N., Valeyrie-Allanore, L., Bertherat, J., et al. (2012). Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Human Molecular Genetics, 21, 5397–5405., dds374 [pii]. https://doi.org/10.1093/hmg/dds374

    Article  CAS  PubMed  Google Scholar 

  51. Curras-Freixes, M., Pineiro-Yanez, E., Montero-Conde, C., Apellaniz-Ruiz, M., Calsina, B., Mancikova, V., Remacha, L., Richter, S., Ercolino, T., Rogowski-Lehmann, N., et al. (2017). PheoSeq: A targeted next-generation sequencing assay for Pheochromocytoma and Paraganglioma diagnostics. The Journal of Molecular Diagnostics, 19, 575–588. https://doi.org/10.1016/j.jmoldx.2017.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peard, L., Cost, N. G., & Saltzman, A. F. (2019). Pediatric pheochromocytoma: Current status of diagnostic imaging and treatment procedures. Current Opinion in Urology, 29, 493–499. https://doi.org/10.1097/MOU.0000000000000650

    Article  PubMed  Google Scholar 

  53. Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P. E., Rubinstein, W. S., Myers, E. N., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851. doi:8242 [pii].

    Article  CAS  Google Scholar 

  54. Bayley, J. P., Kunst, H. P., Cascon, A., Sampietro, M. L., Gaal, J., Korpershoek, E., Hinojar-Gutierrez, A., Timmers, H. J., Hoefsloot, L. H., Hermsen, M. A., et al. (2010). SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncology, 11, 366–372., S1470–2045(10)70007–3 [pii]. https://doi.org/10.1016/S1470-2045(10)70007-3

    Article  CAS  PubMed  Google Scholar 

  55. Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., Pan, Y., Simon, M. C., Thompson, C. B., & Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.

    Article  CAS  Google Scholar 

  56. Lopez-Jimenez, E., Gomez-Lopez, G., Leandro-Garcia, L. J., Munoz, I., Schiavi, F., Montero-Conde, C., de Cubas, A. A., Ramires, R., Landa, I., Leskela, S., et al. (2010). Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Molecular Endocrinology, 24, 2382–2391., me.2010–0256 [pii]. https://doi.org/10.1210/me.2010-0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Korpershoek, E., Favier, J., Gaal, J., Burnichon, N., van Gessel, B., Oudijk, L., Badoual, C., Gadessaud, N., Venisse, A., Bayley, J. P., et al. (2011). SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. Journal of Clinical Endocrinology and Metabolism, 96, E1472–E1476., jc.2011–1043 [pii]. https://doi.org/10.1210/jc.2011-1043

    Article  CAS  PubMed  Google Scholar 

  58. Mannelli, M., Castellano, M., Schiavi, F., Filetti, S., Giacche, M., Mori, L., Pignataro, V., Bernini, G., Giache, V., Bacca, A., et al. (2009). Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab, 94, 1541–1547., jc.2008–2419 [pii]. https://doi.org/10.1210/jc.2008-2419

    Article  CAS  PubMed  Google Scholar 

  59. Ricketts, C. J., Forman, J. R., Rattenberry, E., Bradshaw, N., Lalloo, F., Izatt, L., Cole, T. R., Armstrong, R., Kumar, V. K., Morrison, P. J., et al. (2010). Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Human Mutation, 31, 41–51. https://doi.org/10.1002/humu.21136

    Article  CAS  PubMed  Google Scholar 

  60. Baysal, B. E., McKay, S. E., Kim, Y. J., Zhang, Z., Alila, L., Willett-Brozick, J. E., Pacak, K., Kim, T. H., & Shadel, G. S. (2011). Genomic imprinting at a boundary element flanking the SDHD locus. Human Molecular Genetics, 20, 4452–4461., ddr376 [pii]. https://doi.org/10.1093/hmg/ddr376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burnichon, N., Mazzella, J. M., Drui, D., Amar, L., Bertherat, J., Coupier, I., Delemer, B., Guilhem, I., Herman, P., Kerlan, V., et al. (2017). Risk assessment of maternally inherited SDHD paraganglioma and phaeochromocytoma. Journal of Medical Genetics, 54, 125–133. https://doi.org/10.1136/jmedgenet-2016-104297

    Article  CAS  PubMed  Google Scholar 

  62. Andrews, K. A., Ascher, D. B., Pires, D. E. V., Barnes, D. R., Vialard, L., Casey, R. T., Bradshaw, N., Adlard, J., Aylwin, S., Brennan, P., et al. (2018). Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. Journal of Medical Genetics, 55, 384–394. https://doi.org/10.1136/jmedgenet-2017-105127

    Article  CAS  PubMed  Google Scholar 

  63. Cascon, A., Ruiz-Llorente, S., Cebrian, A., Leton, R., Telleria, D., Benitez, J., & Robledo, M. (2003). G12S and H50R variations are polymorphisms in the SDHD gene. Genes, Chromosomes & Cancer, 37, 220–221. https://doi.org/10.1002/gcc.10212

    Article  Google Scholar 

  64. Wong, M. Y., Andrews, K. A., Challis, B. G., Park, S. M., Acerini, C. L., Maher, E. R., & Casey, R. T. (2019). Clinical practice guidance: Surveillance for phaeochromocytoma and paraganglioma in paediatric succinate dehydrogenase gene mutation carriers. Clinical Endocrinology, 90, 499–505. https://doi.org/10.1111/cen.13926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cascon, A., Lopez-Jimenez, E., Landa, I., Leskela, S., Leandro-Garcia, L. J., Maliszewska, A., Leton, R., de la Vega, L., Garcia-Barcina, M. J., Sanabria, C., et al. (2009). Rationalization of genetic testing in patients with apparently sporadic pheochromocytoma/paraganglioma. Hormone and Metabolic Research, 41, 672–675. https://doi.org/10.1055/s-0029-1202814

    Article  CAS  PubMed  Google Scholar 

  66. van Hulsteijn, L. T., Dekkers, O. M., Hes, F. J., Smit, J. W., & Corssmit, E. P. (2012). Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: A systematic review and meta-analysis. Journal of Medical Genetics, 49, 768–776. https://doi.org/10.1136/jmedgenet-2012-101192

    Article  PubMed  Google Scholar 

  67. Ricketts, C., Woodward, E. R., Killick, P., Morris, M. R., Astuti, D., Latif, F., & Maher, E. R. (2008). Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst, 100, 1260–1262., djn254 [pii]. https://doi.org/10.1093/jnci/djn254

    Article  CAS  PubMed  Google Scholar 

  68. Bickmann, J. K., Sollfrank, S., Schad, A., Musholt, T. J., Springer, E., Miederer, M., Bartsch, O., Papaspyrou, K., Koutsimpelas, D., Mann, W. J., et al. (2014). Phenotypic variability and risk of malignancy in SDHC-linked paragangliomas: Lessons from three unrelated cases with an identical germline mutation (p.Arg133*). The Journal of Clinical Endocrinology and Metabolism, 99, E489–E496. https://doi.org/10.1210/jc.2013-3486

    Article  CAS  PubMed  Google Scholar 

  69. Schiavi, F., Boedeker, C. C., Bausch, B., Peczkowska, M., Gomez, C. F., Strassburg, T., Pawlu, C., Buchta, M., Salzmann, M., Hoffmann, M. M., et al. (2005). Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA, 294, 2057–2063.

    Article  CAS  Google Scholar 

  70. Piccini, V., Rapizzi, E., Bacca, A., Di Trapani, G., Pulli, R., Giache, V., Zampetti, B., Lucci-Cordisco, E., Canu, L., Corsini, E., et al. (2012). Head and neck paragangliomas: Genetic spectrum and clinical variability in 79 consecutive patients. Endocrine-Related Cancer, 19, 149–155. https://doi.org/10.1530/ERC-11-0369

    Article  CAS  PubMed  Google Scholar 

  71. Kunst, H. P., Rutten, M. H., de Monnink, J. P., Hoefsloot, L. H., Timmers, H. J., Marres, H. A., Jansen, J. C., Kremer, H., Bayley, J. P., & Cremers, C. W. (2011). SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clinical Cancer Research, 17, 247–254. https://doi.org/10.1158/1078-0432.CCR-10-0420

    Article  CAS  PubMed  Google Scholar 

  72. Bausch, B., Schiavi, F., Ni, Y., Welander, J., Patocs, A., Ngeow, J., Wellner, U., Malinoc, A., Taschin, E., Barbon, G., et al. (2017). Clinical characterization of the pheochromocytoma and paraganglioma susceptibility genes SDHA, TMEM127, MAX, and SDHAF2 for gene-informed prevention. JAMA Oncology, 3, 1204–1212. https://doi.org/10.1001/jamaoncol.2017.0223

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schmidt, L. S., & Linehan, W. M. (2014). Hereditary leiomyomatosis and renal cell carcinoma. International Journal of Nephrology and Renovascular Disease, 7, 253–260. https://doi.org/10.2147/IJNRD.S42097

    Article  PubMed  PubMed Central  Google Scholar 

  74. Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., et al. (2012). Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes & Development, 26, 1326–1338. https://doi.org/10.1101/gad.191056.112

    Article  CAS  Google Scholar 

  75. Letouze, E., Martinelli, C., Loriot, C., Burnichon, N., Abermil, N., Ottolenghi, C., Janin, M., Menara, M., Nguyen, A. T., Benit, P., et al. (2013). SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell, 23, 739–752., S1535–6108(13)00183–9 [pii]. https://doi.org/10.1016/j.ccr.2013.04.018

    Article  CAS  PubMed  Google Scholar 

  76. Castro-Vega, L. J., Buffet, A., De Cubas, A. A., Cascon, A., Menara, M., Khalifa, E., Amar, L., Azriel, S., Bourdeau, I., Chabre, O., et al. (2014). Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet, 23, 2440–2446., ddt639 [pii]. https://doi.org/10.1093/hmg/ddt639

    Article  CAS  PubMed  Google Scholar 

  77. Qin, Y., Yao, L., King, E. E., Buddavarapu, K., Lenci, R. E., Chocron, E. S., Lechleiter, J. D., Sass, M., Aronin, N., Schiavi, F., et al. (2010). Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nature Genetics, 42, 229–233., ng.533 [pii]. https://doi.org/10.1038/ng.533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yao, L., Schiavi, F., Cascon, A., Qin, Y., Inglada-Perez, L., King, E. E., Toledo, R. A., Ercolino, T., Rapizzi, E., Ricketts, C. J., et al. (2010). Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA, 304, 2611–2619., 304/23/2611 [pii]. https://doi.org/10.1001/jama.2010.1830

    Article  CAS  PubMed  Google Scholar 

  79. Deng, Y., Flores, S. K., Cheng, Z., Qin, Y., Schwartz, R. C., Malchoff, C., & Dahia, P. L. M. (2017). Molecular and phenotypic evaluation of a novel germline TMEM127 mutation with an uncommon clinical presentation. Endocrine-Related Cancer, 24, L79–L82. https://doi.org/10.1530/ERC-17-0359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Casey, R. T., Warren, A. Y., Martin, J. E., Challis, B. G., Rattenberry, E., Whitworth, J., Andrews, K. A., Roberts, T., Clark, G. R., West, H., et al. (2017). Clinical and molecular features of renal and Pheochromocytoma/Paraganglioma Tumor Association Syndrome (RAPTAS): case series and literature review. The Journal of Clinical Endocrinology and Metabolism, 102, 4013–4022. https://doi.org/10.1210/jc.2017-00562

    Article  PubMed  PubMed Central  Google Scholar 

  81. Comino-Mendez, I., Gracia-Aznarez, F. J., Schiavi, F., Landa, I., Leandro-Garcia, L. J., Leton, R., Honrado, E., Ramos-Medina, R., Caronia, D., Pita, G., et al. (2011). Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet, 43, 663–667., ng.861 [pii]. https://doi.org/10.1038/ng.861

    Article  CAS  PubMed  Google Scholar 

  82. Burnichon, N., Cascon, A., Schiavi, F., Morales, N. P., Comino-Mendez, I., Abermil, N., Inglada-Perez, L., de Cubas, A. A., Amar, L., Barontini, M., et al. (2012). MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res, 18, 2828–2837., 1078–0432.CCR-12-0160 [pii]. https://doi.org/10.1158/1078-0432.CCR-12-0160

    Article  CAS  PubMed  Google Scholar 

  83. Romero, O. A., Torres-Diz, M., Pros, E., Savola, S., Gomez, A., Moran, S., Saez, C., Iwakawa, R., Villanueva, A., Montuenga, L. M., et al. (2014). MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discovery, 4, 292–303. https://doi.org/10.1158/2159-8290.CD-13-0799

    Article  CAS  PubMed  Google Scholar 

  84. Wang, D., Hashimoto, H., Zhang, X., Barwick, B. G., Lonial, S., Boise, L. H., Vertino, P. M., & Cheng, X. (2017). MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Research, 45, 2396–2407. https://doi.org/10.1093/nar/gkw1184

    Article  CAS  PubMed  Google Scholar 

  85. Gadd, S., Huff, V., Walz, A. L., Ooms, A., Armstrong, A. E., Gerhard, D. S., Smith, M. A., Auvil, J. M. G., Meerzaman, D., Chen, Q. R., et al. (2017). A Children's oncology group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nature Genetics, 49, 1487–1494. https://doi.org/10.1038/ng.3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schaefer, I. M., Wang, Y., Liang, C. W., Bahri, N., Quattrone, A., Doyle, L., Marino-Enriquez, A., Lauria, A., Zhu, M., Debiec-Rychter, M., et al. (2017). MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation. Nature Communications, 8, 14674. https://doi.org/10.1038/ncomms14674

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ladroue, C., Carcenac, R., Leporrier, M., Gad, S., Le Hello, C., Galateau-Salle, F., Feunteun, J., Pouyssegur, J., Richard, S., & Gardie, B. (2008). PHD2 mutation and congenital erythrocytosis with paraganglioma. The New England Journal of Medicine, 359, 2685–2692., 359/25/2685 [pii]. https://doi.org/10.1056/NEJMoa0806277

    Article  CAS  PubMed  Google Scholar 

  88. Yang, C., Zhuang, Z., Fliedner, S. M., Shankavaram, U., Sun, M. G., Bullova, P., Zhu, R., Elkahloun, A. G., Kourlas, P. J., Merino, M., et al. (2015). Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. Journal of Molecular Medicine (Berlin, Germany), 93, 93–104. https://doi.org/10.1007/s00109-014-1205-7

    Article  CAS  Google Scholar 

  89. Cascon, A., Comino-Mendez, I., Curras-Freixes, M., de Cubas, A. A., Contreras, L., Richter, S., Peitzsch, M., Mancikova, V., Inglada-Perez, L., Perez-Barrios, A., et al. (2015). Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. Journal of National Cancer Institute, 107, djv053. https://doi.org/10.1093/jnci/djv053

    Article  CAS  Google Scholar 

  90. Calsina, B., Curras-Freixes, M., Buffet, A., Pons, T., Contreras, L., Leton, R., Comino-Mendez, I., Remacha, L., Calatayud, M., Obispo, B., et al. (2018). Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genetics in Medicine, 20, 1652–1662. https://doi.org/10.1038/s41436-018-0068-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Buffet, A., Morin, A., Castro-Vega, L. J., Habarou, F., Lussey-Lepoutre, C., Letouze, E., Lefebvre, H., Guilhem, I., Haissaguerre, M., Raingeard, I., et al. (2018). Germline mutations in the mitochondrial 2-Oxoglutarate/malate carrier SLC25A11 gene confer a predisposition to metastatic paragangliomas. Cancer Research, 78, 1914–1922. https://doi.org/10.1158/0008-5472.CAN-17-2463

    Article  CAS  PubMed  Google Scholar 

  92. Remacha, L., Comino-Mendez, I., Richter, S., Contreras, L., Curras-Freixes, M., Pita, G., Leton, R., Galarreta, A., Torres-Perez, R., Honrado, E., et al. (2017). Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clinical Cancer Research, 23, 6315–6324. https://doi.org/10.1158/1078-0432.CCR-16-2250

    Article  CAS  PubMed  Google Scholar 

  93. Remacha, L., Curras-Freixes, M., Torres-Ruiz, R., Schiavi, F., Torres-Perez, R., Calsina, B., Leton, R., Comino-Mendez, I., Roldan-Romero, J. M., Montero-Conde, C., et al. (2018). Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genetics in Medicine, 20, 1644–1651. https://doi.org/10.1038/s41436-018-0003-y

    Article  CAS  PubMed  Google Scholar 

  94. Remacha, L., Pirman, D., Mahoney, C. E., Coloma, J., Calsina, B., Curras-Freixes, M., Leton, R., Torres-Perez, R., Richter, S., Pita, G., et al. (2019). Recurrent germline DLST mutations in individuals with multiple pheochromocytomas and paragangliomas. American Journal of Human Genetics, 104, 651–664. https://doi.org/10.1016/j.ajhg.2019.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Semenza, G. L. (2001). HIF-1, O(2), and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell, 107, 1–3. https://doi.org/10.1016/s0092-8674(01)00518-9

    Article  CAS  PubMed  Google Scholar 

  96. Gruber, M., & Simon, M. C. (2006). Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Current Opinion in Hematology, 13, 169–174. https://doi.org/10.1097/01.moh.0000219663.88409.35

    Article  CAS  PubMed  Google Scholar 

  97. McDonough, M. A., Li, V., Flashman, E., Chowdhury, R., Mohr, C., Lienard, B. M., Zondlo, J., Oldham, N. J., Clifton, I. J., Lewis, J., et al. (2006). Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proceedings of the National Academy of Sciences of the United States of America, 103, 9814–9819. https://doi.org/10.1073/pnas.0601283103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Min, J. H., Yang, H., Ivan, M., Gertler, F., Kaelin, W. G., Jr., & Pavletich, N. P. (1886-1889). Structure of an HIF-1alpha -pVHL complex: Hydroxyproline recognition in signaling. Science, 2002, 296. https://doi.org/10.1126/science.1073440

    Article  Google Scholar 

  99. Lorenzo, F. R., Yang, C., Ng Tang Fui, M., Vankayalapati, H., Zhuang, Z., Huynh, T., Grossmann, M., Pacak, K., & Prchal, J. T. (2013). A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. Journal of Molecular Medicine (Berlin, Germany), 91, 507–512. https://doi.org/10.1007/s00109-012-0967-z

    Article  CAS  Google Scholar 

  100. Cox, A. D., & Der, C. J. (2010). Ras history: The saga continues. Small GTPases, 1, 2–27. https://doi.org/10.4161/sgtp.1.1.12178

    Article  PubMed  PubMed Central  Google Scholar 

  101. Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: Split personalities. Nature Reviews. Molecular Cell Biology, 9, 517–531. https://doi.org/10.1038/nrm2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baines, A. T., Xu, D., & Der, C. J. (2011). Inhibition of Ras for cancer treatment: The search continues. Future Medicinal Chemistry, 3, 1787–1808. https://doi.org/10.4155/fmc.11.121

    Article  CAS  PubMed  Google Scholar 

  103. Yoshimoto, K., Iwahana, H., Fukuda, A., Sano, T., Katsuragi, K., Kinoshita, M., Saito, S., & Itakura, M. (1992). Ras mutations in endocrine tumors: Mutation detection by polymerase chain reaction-single strand conformation polymorphism. Japanese Journal of Cancer Research, 83, 1057–1062. https://doi.org/10.1111/j.1349-7006.1992.tb02722.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crona, J., Delgado Verdugo, A., Maharjan, R., Stalberg, P., Granberg, D., Hellman, P., & Bjorklund, P. (2013). Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. Journal of Clinical Endocrinology Metabolism, 98, E1266–E1271., jc.2012–4257 [pii]. https://doi.org/10.1210/jc.2012-4257

    Article  CAS  PubMed  Google Scholar 

  105. Oudijk, L., de Krijger, R. R., Rapa, I., Beuschlein, F., de Cubas, A. A., Dei Tos, A. P., Dinjens, W. N., Korpershoek, E., Mancikova, V., Mannelli, M., et al. (2014). H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or pathological features: Data from a multi-institutional series. The Journal of Clinical Endocrinology and Metabolism, 99, E1376–E1380. https://doi.org/10.1210/jc.2013-3879

    Article  CAS  PubMed  Google Scholar 

  106. Nikiforov, Y. E., & Nikiforova, M. N. (2011). Molecular genetics and diagnosis of thyroid cancer. Nature Reviews. Endocrinology, 7, 569–580. https://doi.org/10.1038/nrendo.2011.142

    Article  CAS  PubMed  Google Scholar 

  107. Agrawal, N., Jiao, Y., Sausen, M., Leary, R., Bettegowda, C., Roberts, N. J., Bhan, S., Ho, A. S., Khan, Z., Bishop, J., et al. (2013). Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. The Journal of Clinical Endocrinology and Metabolism, 98, E364–E369. https://doi.org/10.1210/jc.2012-2703

    Article  CAS  PubMed  Google Scholar 

  108. Ciampi, R., Mian, C., Fugazzola, L., Cosci, B., Romei, C., Barollo, S., Cirello, V., Bottici, V., Marconcini, G., Rosa, P. M., et al. (2013). Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid, 23, 50–57. https://doi.org/10.1089/thy.2012.0207

    Article  CAS  PubMed  Google Scholar 

  109. Fishbein, L., Leshchiner, I., Walter, V., Danilova, L., Robertson, A. G., Johnson, A. R., Lichtenberg, T. M., Murray, B. A., Ghayee, H. K., Else, T., et al. (2017). Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 31, 181–193., S1535–6108(17)30001–6 [pii]. https://doi.org/10.1016/j.ccell.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fishbein, L., Khare, S., Wubbenhorst, B., DeSloover, D., D'Andrea, K., Merrill, S., Cho, N. W., Greenberg, R. A., Else, T., Montone, K., et al. (2015). Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nature Communications, 6, 6140., ncomms7140 [pii]. https://doi.org/10.1038/ncomms7140

    Article  CAS  PubMed  Google Scholar 

  111. Comino-Mendez, I., Tejera, A. M., Curras-Freixes, M., Remacha, L., Gonzalvo, P., Tonda, R., Leton, R., Blasco, M. A., Robledo, M., & Cascon, A. (2016). ATRX driver mutation in a composite malignant pheochromocytoma. Cancer Genetics, 209, 272–277. https://doi.org/10.1016/j.cancergen.2016.04.058

    Article  CAS  PubMed  Google Scholar 

  112. Job, S., Draskovic, I., Burnichon, N., Buffet, A., Cros, J., Lepine, C., Venisse, A., Robidel, E., Verkarre, V., Meatchi, T., et al. (2019). Telomerase activation and ATRX mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clinical Cancer Research, 25, 760–770. https://doi.org/10.1158/1078-0432.CCR-18-0139

    Article  CAS  PubMed  Google Scholar 

  113. Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G. J., et al. (2009). IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine, 360, 765–773., 360/8/765 [pii]. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  Google Scholar 

  114. Gaal, J., Burnichon, N., Korpershoek, E., Roncelin, I., Bertherat, J., Plouin, P. F., de Krijger, R. R., Gimenez-Roqueplo, A. P., & Dinjens, W. N. (2010). Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. Journal of Clinical Endocrinology Metabolism, 95, 1274–1278., jc.2009–2170 [pii]. https://doi.org/10.1210/jc.2009-2170

    Article  CAS  PubMed  Google Scholar 

  115. Toledo, R. A., & Dahia, P. L. (2015). Next-generation sequencing for the diagnosis of hereditary pheochromocytoma and paraganglioma syndromes. Current Opinion in Endocrinology, Diabetes, and Obesity, 22, 169–179. https://doi.org/10.1097/MED.0000000000000150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Toledo, R. A. (2017). Genetics of pheochromocytomas and paragangliomas: An overview on the recently implicated genes MERTK, MET, fibroblast growth factor receptor 1, and H3F3A. Endocrinology and Metabolism Clinics of North America, 46, 459–489. https://doi.org/10.1016/j.ecl.2017.01.009

    Article  PubMed  Google Scholar 

  117. Jansen, J. C., van den Berg, R., Kuiper, A., van der Mey, A. G., Zwinderman, A. H., & Cornelisse, C. J. (2000). Estimation of growth rate in patients with head and neck paragangliomas influences the treatment proposal. Cancer, 88, 2811–2816.

    Article  CAS  Google Scholar 

  118. Langerman, A., Athavale, S. M., Rangarajan, S. V., Sinard, R. J., & Netterville, J. L. (2012). Natural history of cervical paragangliomas: Outcomes of observation of 43 patients. Archives of Otolaryngology – Head & Neck Surgery, 138, 341–345. https://doi.org/10.1001/archoto.2012.37

    Article  Google Scholar 

  119. Matro, J., Giubellino, A., & Pacak, K. (2013). Current and future therapeutic approaches for metastatic pheochromocytoma and paraganglioma: Focus on SDHB tumors. Hormone and Metabolic Research, 45, 147–153. https://doi.org/10.1055/s-0032-1331211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zuber, S. M., Kantorovich, V., & Pacak, K. (2011). Hypertension in pheochromocytoma: Characteristics and treatment. Endocrinology and Metabolism Clinics of North America, 40, 295–311., vii. https://doi.org/10.1016/j.ecl.2011.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Robledo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s) under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robledo, M., Currás, M., Cascón, A. (2021). Pheochromocytoma and Paraganglioma. In: Malkin, D. (eds) The Hereditary Basis of Childhood Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-74448-9_5

Download citation

Publish with us

Policies and ethics