Skip to main content

Recognition of Cancer Predisposition Syndromes

  • Chapter
  • First Online:
The Hereditary Basis of Childhood Cancer

Abstract

This chapter aims to explore the multitude of challenges that limit the clinician’s ability to rapidly identify cancer predisposition syndromes in children with cancer. The current clinical approaches as well as novel strategies for CPS screening and detection will also be discussed. In particular, the integration of comprehensive germline sequencing and the development of eHealth technologies in pediatric oncology practice will be presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gröbner, S. N., Worst, B. C., Weischenfeldt, J., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555(7696), 321–327. https://doi.org/10.1038/nature25480

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, J., Walsh, M. F., Wu, G., et al. (2015). Germline mutations in predisposition genes in pediatric cancer. The New England Journal of Medicine, 373(24), 2336–2346. https://doi.org/10.1056/NEJMoa1508054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ripperger, T., Bielack, S. S., Borkhardt, A., et al. (2017). Childhood cancer predisposition syndromes—A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. American Journal of Medical Genetics - Part A, 173(4), 1017–1037. https://doi.org/10.1002/ajmg.a.38142

    Article  PubMed  Google Scholar 

  4. Jongmans, M. C. J., Loeffen, J. L. C. M., Waanders, E., et al. (2016). Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool. European Journal of Medical Genetics, 59(3), 116–125. https://doi.org/10.1016/j.ejmg.2016.01.008

    Article  PubMed  Google Scholar 

  5. Plon, S. E., & Lupo, P. J. (2019). Genetic predisposition to childhood cancer in the genomic era. Annual Review of Genomics and Human Genetics, 20, 241–263. https://doi.org/10.1146/annurev-genom-083118-015415

    Article  CAS  PubMed  Google Scholar 

  6. Pui, C. H., Nichols, K. E., & Yang, J. J. (2019). Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nature Reviews. Clinical Oncology, 16(4), 227–240. https://doi.org/10.1038/s41571-018-0136-6

    Article  CAS  PubMed  Google Scholar 

  7. Villani, A., Malkin, D., & Tabori, U. (2012). Syndromes predisposing to pediatric central nervous system tumors: Lessons learned and new promises. Current Neurology and Neuroscience Reports, 12(2), 153–164. https://doi.org/10.1007/s11910-011-0244-5

    Article  PubMed  Google Scholar 

  8. Goudie, C., Witkowski, L., Vairy, S., Glenn McCluggage, W., & Foulkes, W. D. (2018). Paediatric ovarian tumours and their associated cancer susceptibility syndromes. Journal of Medical Genetics, 55(1), 1–10. https://doi.org/10.1136/jmedgenet-2017-104926

    Article  PubMed  Google Scholar 

  9. Feurstein, S., Drazer, M. W., & Godley, L. A. (2016). Genetic predisposition to leukemia and other hematologic malignancies. Seminars in Oncology, 43(5), 598–608. https://doi.org/10.1053/j.seminoncol.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen, F. C., Van Overeem, H. T., & Sørensen, C. S. (2016). Hereditary breast and ovarian cancer: New genes in confined pathways. Nature Reviews. Cancer, 16(9), 599–612. https://doi.org/10.1038/nrc.2016.72

    Article  CAS  PubMed  Google Scholar 

  11. Moss, C. A., Cojocaru, E., Hanwell, J., et al. (2019). Multidisciplinary interventions in a specialist Drug Development Unit to improve family history documentation and onward referral of patients with advanced cancer to cancer genetics services. European Journal of Cancer, 114, 97–106. https://doi.org/10.1016/j.ejca.2019.04.009

    Article  PubMed  Google Scholar 

  12. Ferner, R. E., Huson, S. M., & Evans, D. G. R. (2011). Neurofibromatoses in clinical practice. Springer. https://doi.org/10.1007/978-0-85729-629-0

    Book  Google Scholar 

  13. Bougeard, G., Renaux-Petel, M., Flaman, J. M., et al. (2015). Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. Journal of Clinical Oncology, 33(21), 2345–2352. https://doi.org/10.1200/JCO.2014.59.5728

    Article  CAS  PubMed  Google Scholar 

  14. Mai, P. L., Malkin, D., Garber, J. E., et al. (2012). Li-Fraumeni syndrome: Report of a clinical research workshop and creation of a research consortium. Cancer Genetics, 205(10), 479–487. https://doi.org/10.1016/j.cancergen.2012.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schneider, K., Zelley, K., Nichols, K. E., & Garber, J. (2019). Li-Fraumeni syndrome. 1999 Jan 19 [Updated 2013 Apr 11].

    Google Scholar 

  16. Katharina, W., Kratz, C. P., Vasen, H. F. A., et al. (2014). Diagnostic criteria for constitutional mismatch repair deficiency syndrome: Suggestions of the European consortium “Care for CMMRD” (C4CMMRD). Journal of Medical Genetics, 51(6), 355–365. https://doi.org/10.1136/jmedgenet-2014-102284

    Article  CAS  Google Scholar 

  17. Lu, K. H., Wood, M. E., Daniels, M., et al. (2014). American society of clinical oncology expert statement: Collection and use of a cancer family history for oncology providers. Journal of Clinical Oncology, 32(8), 833–840. https://doi.org/10.1200/JCO.2013.50.9257

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tehranifar, P., Wu, H. C., Shriver, T., Cloud, A. J., & Terry, M. B. (2015). Validation of family cancer history data in high-risk families: The influence of cancer site, ethnicity, kinship degree, and multiple family reporters. American Journal of Epidemiology, 181(3), 204–212. https://doi.org/10.1093/aje/kwu258

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kelly, K. M., Shedlosky-Shoemaker, R., Atkins, E., Tworek, C., & Porter, K. (2015). Improving family history collection. Journal of Health Communication, 20(4), 445–452. https://doi.org/10.1080/10810730.2014.977470

    Article  PubMed  Google Scholar 

  20. Oberg, J. A., Glade Bender, J. L., Sulis, M. L., et al. (2016). Implementation of next generation sequencing into pediatric hematology-oncology practice: Moving beyond actionable alterations. Genome Medicine, 8(1), 133. https://doi.org/10.1186/s13073-016-0389-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G4K: Genomes for Kids. Retrieved from https://www.stjude.org/research/clinical-trials/g4k-genetics.html

  22. Precision Oncology for Young People (Profyle). Retrieved from https://www.tfri.ca/our-research/research-project/precision-oncology-for-young-people-(profyle)

  23. Precision Medicine for Children with Cancer (PRISM). Retrieved from https://clinicaltrials.gov/ct2/show/NCT03336931

  24. Lau, L., Byrne, J., et al. (2017). Pilot study of a comprehensive precision medicine platform for children with high-risk cancer. Journal of Clinical Oncology, 35(suppl_15), 10538. https://doi.org/10.1200/jco.2017.35.15_suppl.10539

    Article  Google Scholar 

  25. Parsons, D. W., Roy, A., Yang, Y., et al. (2016). Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncology, 2(5), 616–624. https://doi.org/10.1001/jamaoncol.2015.5699

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mody, R. J., Wu, Y. M., Lonigro, R. J., et al. (2015). Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA, 314(9), 913–925. https://doi.org/10.1001/jama.2015.10080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reuter, C., Chun, N., Pariani, M., & Hanson-Kahn, A. (2019). Understanding variants of uncertain significance in the era of multigene panels: Through the eyes of the patient. Journal of Genetic Counseling, 28(4), 878–886. https://doi.org/10.1002/jgc4.1130

    Article  PubMed  Google Scholar 

  28. McGill, B. C., Wakefield, C. E., Vetsch, J., et al. (2019). “I remember how I felt, but I don’t remember the gene”: Families’ experiences of cancer-related genetic testing in childhood. Pediatric Blood & Cancer, 66(8), e27762. https://doi.org/10.1002/pbc.27762

    Article  Google Scholar 

  29. Fong, P. C., Boss, D. S., Yap, T. A., et al. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. The New England Journal of Medicine, 361(2), 123–134. https://doi.org/10.1056/NEJMoa0900212

    Article  CAS  PubMed  Google Scholar 

  30. De Laat, J. M., Tham, E., Pieterman, C. R. C., et al. (2012). Predicting the risk of multiple endocrine neoplasia type 1 for patients with commonly occurring endocrine tumors. European Journal of Endocrinology, 167(2), 181–187. https://doi.org/10.1530/EJE-12-0210

    Article  CAS  PubMed  Google Scholar 

  31. Goudie, C., Coltin, H., Witkowski, L., Mourad, S., Malkin, D., & Foulkes, W. D. (2017). The McGill Interactive Pediatric OncoGenetic Guidelines: An approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation. Pediatric Blood & Cancer, 64(8). https://doi.org/10.1002/pbc.26441

  32. Goudie, C., Cullinan, N., Villani, A., et al. (2018). Retrospective evaluation of a decision-support algorithm (MIPOGG) for genetic referrals for children with neuroblastic tumors. Pediatric Blood & Cancer, 65(12), e27390. https://doi.org/10.1002/pbc.27390

    Article  Google Scholar 

  33. Cullinan, N., Villani, A., Mourad, S., et al. (2020). An eHealth decision-support tool to prioritize referral practices for genetic evaluation of patients with Wilms tumor. International Journal of Cancer, 146(4), 1010–1017. https://doi.org/10.1002/ijc.32561

    Article  CAS  PubMed  Google Scholar 

  34. Postema, F. A. M., Hopman, S. M. J., De Borgie, C. A. J. M., et al. (2017). Validation of a clinical screening instrument for tumour predisposition syndromes in patients with childhood cancer (TuPS): Protocol for a prospective, observational, multicentre study. BMJ Open, 7(1), e013237. https://doi.org/10.1136/bmjopen-2016-013237

    Article  PubMed  PubMed Central  Google Scholar 

  35. Del Fiol, G., Kohlmann, W., Bradshaw, R. L., et al. (2020). Standards-based clinical decision support platform to manage patients who meet guideline-based criteria for genetic evaluation of familial cancer. JCO Clinical Cancer Informatics, 4, 1–9. https://doi.org/10.1200/cci.19.00120

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Goudie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s) under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichman, L., Goudie, C. (2021). Recognition of Cancer Predisposition Syndromes. In: Malkin, D. (eds) The Hereditary Basis of Childhood Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-74448-9_16

Download citation

Publish with us

Policies and ethics