Skip to main content

Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia

  • Chapter
  • First Online:
Pathologic Myopia

Abstract

Form-deprivation myopia (FDM) is induced in eyes occluded with translucent diffusers; lens-induced myopia (LIM) when negative lenses are fitted over the eye, imposing hyperopic defocus. Hyperopically defocused images accelerate axial elongation, whereas myopic defocus slows axial elongation, driving refractions towards emmetropia. In contrast, human refractive development aims for a refraction close to +1 D, where normal visual acuity can be achieved with accommodation until later in life. However, environments with strong educational pressures and limited time outdoors accelerate axial elongation, inducing myopic shifts in refraction that decline with age, with little evidence of mechanisms maintaining emmetropia. There is little evidence that natural myopic defocus slows human myopia progression, but, paradoxically, myopic defocus imposed with specialised lenses slows myopia progression. Both FDM and LIM rapidly depress retinal dopamine release and downregulate the immediate early gene Egr-1. Children who spend more time outdoors are protected from myopia, probably due to exposure to brighter light and increased dopamine release outdoors, since bright light and dopamine agonists suppress experimental myopia. Atropine acts on similar pathways, which may also be involved in genetic forms of myopia involving outer retinal mutations that could affect the ON-bipolar pathway and reduce dopamine release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtin BJ. The myopias. New York: Harper and Row; 1985.

    Google Scholar 

  2. Levinsohn G. Reply to criticisms of my theory on the genesis of myopia. Arch Ophthalmol. 1936;15:84.

    Article  Google Scholar 

  3. Young FA. The development and retention of myopia by monkeys. Am J Optom Arch Am Acad Optom. 1961;38:545–55. Epub 1961/10/01.

    Article  CAS  PubMed  Google Scholar 

  4. Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977;266(5597):66–8. Epub 1977/03/03.

    Article  CAS  PubMed  Google Scholar 

  5. Wallman J, Turkel J, Trachtman J. Extreme myopia produced by modest change in early visual experience. Science. 1978;201(4362):1249–51. Epub 1978/09/29.

    Article  CAS  PubMed  Google Scholar 

  6. Tejedor J, de la Villa P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci. 2003;44(1):32–6. Epub 2002/12/31.

    Article  PubMed  Google Scholar 

  7. Barathi VA, Boopathi VG, Yap EP, Beuerman RW. Two models of experimental myopia in the mouse. Vis Res. 2008;48(7):904–16. Epub 2008/02/22.

    Article  CAS  PubMed  Google Scholar 

  8. Howlett MH, McFadden SA. Spectacle lens compensation in the pigmented guinea pig. Vis Res. 2009;49(2):219–27. Epub 2008/11/11.

    Article  PubMed  Google Scholar 

  9. Howlett MH, McFadden SA. Form-deprivation myopia in the guinea pig (Cavia porcellus). Vis Res. 2006;46(1–2):267–83. Epub 2005/09/06.

    Article  PubMed  Google Scholar 

  10. Sherman SM, Norton TT, Casagrande VA. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res. 1977;124(1):154–7. Epub 1977/03/18.

    Article  CAS  PubMed  Google Scholar 

  11. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68. Epub 2004/08/18.

    Article  CAS  PubMed  Google Scholar 

  12. Cook RC, Glasscock RE. Refractive and ocular findings in the newborn. Am J Ophthalmol. 1951;34(10):1407–13. Epub 1951/10/01.

    Article  CAS  PubMed  Google Scholar 

  13. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol. 2001;119(11):1625–8. Epub 2001/11/16.

    Article  CAS  PubMed  Google Scholar 

  14. Mutti DO, Mitchell GL, Jones LA, Friedman NE, Frane SL, Lin WK, et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Invest Ophthalmol Vis Sci. 2005;46(9):3074–80. Epub 2005/08/27.

    Article  PubMed  Google Scholar 

  15. Pennie FC, Wood IC, Olsen C, White S, Charman WN. A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life. Vis Res. 2001;41(21):2799–810. Epub 2001/10/06.

    Article  CAS  PubMed  Google Scholar 

  16. Morgan IG, Rose KA, Ellwein LB. Is emmetropia the natural endpoint for human refractive development? An analysis of population-based data from the refractive error study in children (RESC). Acta Ophthalmol. 2010;88(8):877–84. Epub 2009/12/05.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ojaimi E, Rose KA, Morgan IG, Smith W, Martin FJ, Kifley A, et al. Distribution of ocular biometric parameters and refraction in a population-based study of Australian children. Invest Ophthalmol Vis Sci. 2005;46(8):2748–54. Epub 2005/07/27.

    Article  PubMed  Google Scholar 

  18. Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and prevention. Prog Retin Eye Res. 2018;62:134–49.

    Article  PubMed  Google Scholar 

  19. Morgan IG, He M, Rose KA. EPIDEMIC OF PATHOLOGIC MYOPIA: what can laboratory studies and epidemiology tell us? Retina. 2017;37:989–97.

    Article  PubMed  Google Scholar 

  20. Iribarren R, Morgan IG, Chan YH, Lin X, Saw SM. Changes in lens power in Singapore Chinese children during refractive development. Invest Ophthalmol Vis Sci. 2012;53:5124–30.

    Article  PubMed  Google Scholar 

  21. Jones LA, Mitchell GL, Mutti DO, Hayes JR, Moeschberger ML, Zadnik K. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005;46(7):2317–27. Epub 2005/06/28.

    Article  PubMed  Google Scholar 

  22. Wong HB, Machin D, Tan SB, Wong TY, Saw SM. Ocular component growth curves among Singaporean children with different refractive error status. Invest Ophthalmol Vis Sci. 2010;51(3):1341–7. Epub 2009/10/31.

    Article  PubMed  Google Scholar 

  23. Mutti DO, Mitchell GL, Sinnott LT, Jones-Jordan LA, Moeschberger ML, Cotter SA, et al. Corneal and crystalline lens dimensions before and after myopia onset. Optom Vis Sci. 2012;89(3):251–62. Epub 2012/01/10.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xiang F, He M, Morgan IG. Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children. Ophthalmology. 2012;119(7):1478–84. Epub 2012/05/15.

    Article  PubMed  Google Scholar 

  25. Iribarren R. Crystalline lens and refractive development. Prog Retin Eye Res. 2015;47:86–106.

    Article  PubMed  Google Scholar 

  26. Guo X, Fu M, Ding X, Morgan IG, Zeng Y, He M. Significant axial elongation with minimal change in refraction in 3- to 6-year-old Chinese preschoolers: the Shenzhen Kindergarten eye study. Ophthalmology. 2017;

    Google Scholar 

  27. Lan W, Zhao F, Lin L, et al. Refractive errors in 3-6 year-old Chinese children: a very low prevalence of myopia? PLoS One. 2013;8:e78003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma Y, Qu X, Zhu X, et al. Age-specific prevalence of visual impairment and refractive error in children aged 3-10 years in Shanghai, China. Invest Ophthalmol Vis Sci. 2016;57:6188–96.

    Article  PubMed  Google Scholar 

  29. He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314:1142–8.

    Article  CAS  PubMed  Google Scholar 

  30. Wu JF, Bi HS, Wang SM, et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong children eye study. PLoS One. 2013;8:e82763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Giordano L, Friedman DS, Repka MX, Katz J, Ibironke J, Hawes P, et al. Prevalence of refractive error among preschool children in an urban population: the Baltimore Pediatric Eye Disease Study. Ophthalmology. 2009;116(4):739–46, 46 e1–4. Epub 2009/02/27.

    Article  PubMed  Google Scholar 

  32. O’Donoghue L, McClelland JF, Logan NS, Rudnicka AR, Owen CG, Saunders KJ. Refractive error and visual impairment in school children in Northern Ireland. Br J Ophthalmol. 2010;94:1155–9.

    Google Scholar 

  33. Twelker JD, Mitchell GL, Messer DH, et al. Children’s ocular components and age, gender, and ethnicity. Optom Vis Sci. 2009;86:918–35.

    Google Scholar 

  34. Wen G, Tarczy-Hornoch K, McKean-Cowdin R, et al. Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology. 2013;120:2109–16.

    Article  PubMed  Google Scholar 

  35. Multi-Ethnic Pediatric Eye Disease Study Group. Prevalence of myopia and hyperopia in 6- to 72-month-old African American and Hispanic children: the multi-ethnic pediatric eye disease study. Ophthalmology. 2010;117(1):140–7.e3. Epub 2009/11/21.

    Google Scholar 

  36. Dirani M, Chan YH, Gazzard G, Hornbeak DM, Leo SW, Selvaraj P, et al. Prevalence of refractive error in Singaporean Chinese children: the strabismus, amblyopia, and refractive error in young Singaporean children (STARS) study. Invest Ophthalmol Vis Sci. 2010;51(3):1348–55. Epub 2009/11/26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saw SM, Carkeet A, Chia KS, Stone RA, Tan DT. Component dependent risk factors for ocular parameters in Singapore Chinese children. Ophthalmology. 2002;109:2065–71.

    Article  PubMed  Google Scholar 

  38. Yam JC, Tang SM, Kam KW, et al. High prevalence of myopia in children and their parents in Hong Kong Chinese Population: the Hong Kong children eye study. Acta Ophthalmol. 2020; in press

    Google Scholar 

  39. Lin LL, Shih YF, Hsiao CK, CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004;33:27–33.

    CAS  PubMed  Google Scholar 

  40. Flitcroft DI. Is myopia a failure of homeostasis? Exp Eye Res. 2013;114:16–24.

    Article  CAS  PubMed  Google Scholar 

  41. Flitcroft DI. Emmetropisation and the aetiology of refractive errors. Eye (Lond). 2014;28:169–79.

    Article  CAS  Google Scholar 

  42. Wildsoet CF. Active emmetropization–evidence for its existence and ramifications for clinical practice. Ophthalmic Physiol Opt. 1997;17(4):279–90. Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  43. Anderson HA, Glasser A, Manny RE, Stuebing KK. Age-related changes in accommodative dynamics from preschool to adulthood. Invest Ophthalmol Vis Sci. 2010;51(1):614–22. Epub 2009/08/18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qiao-Grider Y, Hung LF, Kee CS, Ramamirtham R. Smith 3rd EL. Normal ocular development in young rhesus monkeys (Macaca mulatta). Vis Res. 2007;47(11):1424–44. Epub 2007/04/10.

    Article  PubMed  Google Scholar 

  45. Smith EL 3rd. Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029–44. Epub 2011/07/13.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sorsby A, Sheridan M, Leary GA, Benjamin B. Vision, visual acuity, and ocular refraction of young men: findings in a sample of 1,033 subjects. Br Med J. 1960;1(5183):1394–8. Epub 1960/05/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mutti DO, Sinnott LT, Mitchell GL, et al. Relative peripheral refractive error and the risk of onset and progression of myopia in children. Invest Ophthalmol Vis Sci. 2011;52:199–205.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thorn F, Gwiazda J, Held R. Myopia progression is specified by a double exponential growth function. Optom Vis Sci. 2005;82:286–97.

    Article  PubMed  Google Scholar 

  49. Hoyt CS, Stone RD, Fromer C, Billson FA. Monocular axial myopia associated with neonatal eyelid closure in human infants. Am J Ophthalmol. 1981;91(2):197–200. Epub 1981/02/01.

    Article  CAS  PubMed  Google Scholar 

  50. Schaeffel F, Glasser A, Howland HC. Accommodation, refractive error and eye growth in chickens. Vis Res. 1988;28(5):639–57. Epub 1988/01/01.

    Article  CAS  PubMed  Google Scholar 

  51. Irving EL, Callender MG, Sivak JG. Inducing myopia, hyperopia, and astigmatism in chicks. Optom Vis Sci. 1991;68(5):364–8. Epub 1991/05/01.

    Article  CAS  PubMed  Google Scholar 

  52. McBrien NA, Moghaddam HO, New R, Williams LR. Experimental myopia in a diurnal mammal (Sciurus carolinensis) with no accommodative ability. J Physiol. 1993;469:427–41. Epub 1993/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci. 1993;34(1):205–15. Epub 1993/01/01.

    CAS  PubMed  Google Scholar 

  54. Schaeffel F, Troilo D, Wallman J, Howland HC. Developing eyes that lack accommodation grow to compensate for imposed defocus. Vis Neurosci. 1990;4(2):177–83. Epub 1990/02/01.

    Article  CAS  PubMed  Google Scholar 

  55. Wildsoet C. Neural pathways subserving negative lens-induced emmetropization in chicks–insights from selective lesions of the optic nerve and ciliary nerve. Curr Eye Res. 2003;27(6):371–85. Epub 2004/01/06.

    Article  PubMed  Google Scholar 

  56. Guo L, Frost MR, He L, Siegwart JT Jr, Norton TT. Gene expression signatures in tree shrew sclera in response to three myopiagenic conditions. Invest Ophthalmol Vis Sci. 2013;54:6806–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morgan IG, Ashby RS, Nickla DL. Form deprivation and lens-induced myopia: are they different? Ophthalmic Physiol Opt. 2013;33:355–61.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wallman J, Adams JI. Developmental aspects of experimental myopia in chicks: susceptibility, recovery and relation to emmetropization. Vis Res. 1987;27(7):1139–63. Epub 1987/01/01.

    Article  CAS  PubMed  Google Scholar 

  59. McBrien NA, Gentle A, Cottriall C. Optical correction of induced axial myopia in the tree shrew: implications for emmetropization. Optom Vis Sci. 1999;76(6):419–27. Epub 1999/07/23.

    Article  CAS  PubMed  Google Scholar 

  60. Wildsoet CF, Schmid KL. Optical correction of form deprivation myopia inhibits refractive recovery in chick eyes with intact or sectioned optic nerves. Vis Res. 2000;40(23):3273–82. Epub 2000/09/29. .PubMed

    Article  CAS  PubMed  Google Scholar 

  61. Zhu X, McBrien NA, Smith EL 3rd, Troilo D, Wallman J. Eyes in various species can shorten to compensate for myopic defocus. Invest Ophthalmol Vis Sci. 2013;54:2634–44.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo L, Frost MR, Siegwart JT Jr, Norton TT. Gene expression signatures in tree shrew sclera during recovery from minus-lens wear and during plus-lens wear. Mol Vis. 2019;25:311–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang HM, Chang DS, Wu PC. The Association between near work activities and myopia in children-a systematic review and meta-analysis. PLoS One. 2015;10:e0140419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mutti DO, Zadnik K. Has near work’s star fallen? Optom Vis Sci. 2009;86(2):76–8. Epub 2009/01/22.

    Article  PubMed  Google Scholar 

  65. Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(11):5348–54. Epub 2009/06/12.

    Article  PubMed  Google Scholar 

  66. Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci. 2010;51(10):5247–53. Epub 2010/05/07.

    Article  PubMed  Google Scholar 

  67. Smith EL 3rd, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012;53(1):421–8. Epub 2011/12/16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85. Epub 2008/02/26.

    Article  PubMed  Google Scholar 

  69. Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8):3524–32. Epub 2007/07/27.

    Article  PubMed  Google Scholar 

  70. Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30. Epub 2008/04/17.

    Article  PubMed  Google Scholar 

  71. Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci. 2005;82(4):273–8. Epub 2005/04/15.

    Article  PubMed  Google Scholar 

  72. Mutti DO, Mitchell GL, Hayes JR, Jones LA, Moeschberger ML, Cotter SA, et al. Accommodative lag before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2006;47(3):837–46. Epub 2006/03/01.

    Article  PubMed  Google Scholar 

  73. Zhu X, Park TW, Winawer J, Wallman J. In a matter of minutes, the eye can know which way to grow. Invest Ophthalmol Vis Sci. 2005;46(7):2238–41. Epub 2005/06/28.

    Article  PubMed  Google Scholar 

  74. Zhu X, Winawer JA, Wallman J. Potency of myopic defocus in spectacle lens compensation. Invest Ophthalmol Vis Sci. 2003;44:2818–27.

    Article  PubMed  Google Scholar 

  75. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31(6):622–60. Epub 2012/07/10.

    Article  CAS  PubMed  Google Scholar 

  76. Flitcroft DI, Harb EN, Wildsoet CF. The spatial frequency content of urban and indoor environments as a potential risk factor for myopia development. Invest Ophthalmol Vis Sci. 2020;61:42.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bao J, Yang A, Huang Y, et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol. 2021;

    Google Scholar 

  78. Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom Vis Sci. 2019;96:556–67.

    Article  PubMed  Google Scholar 

  79. Lam CSY, Tang WC, Tse DY, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104:363–8.

    Article  PubMed  Google Scholar 

  80. Cohen Y, Belkin M, Yehezkel O, Solomon AS, Polat U. Dependency between light intensity and refractive development under light–dark cycles. Exp Eye Res. 2011;92(1):40–6. Epub 2010/11/09.

    Article  CAS  PubMed  Google Scholar 

  81. Cohen Y, Peleg E, Belkin M, Polat U, Solomon AS. Ambient illuminance, retinal dopamine release and refractive development in chicks. Exp Eye Res. 2012;103:33–40. Epub 2012/09/11.

    Article  CAS  PubMed  Google Scholar 

  82. She Z, Hung LF, Arumugam B, Beach KM, Smith EL 3rd. Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macaca mulatta). Vision Res. 2020;176:48–59.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Napper GA, Brennan NA, Barrington M, Squires MA, Vessey GA, Vingrys AJ. The duration of normal visual exposure necessary to prevent form deprivation myopia in chicks. Vis Res. 1995;35(9):1337–44. Epub 1995/05/01.

    Article  CAS  PubMed  Google Scholar 

  84. Napper GA, Brennan NA, Barrington M, Squires MA, Vessey GA, Vingrys AJ. The effect of an interrupted daily period of normal visual stimulation on form deprivation myopia in chicks. Vis Res. 1997;37(12):1557–64. Epub 1997/06/01.

    Article  CAS  PubMed  Google Scholar 

  85. Schmid KL, Wildsoet CF. Effects on the compensatory responses to positive and negative lenses of intermittent lens wear and ciliary nerve section in chicks. Vision Res. 1996;36:1023–36.

    Article  CAS  PubMed  Google Scholar 

  86. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–38. Epub 2003/07/11.

    Article  CAS  PubMed  Google Scholar 

  87. Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82(2):185–200. Epub 2005/10/06.

    Article  PubMed  CAS  Google Scholar 

  88. Troilo D, Gottlieb MD, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section. Curr Eye Res. 1987;6(8):993–9. Epub 1987/08/01.

    Article  CAS  PubMed  Google Scholar 

  89. Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73–7. Epub 1987/07/03.

    Article  CAS  PubMed  Google Scholar 

  90. Diether S, Schaeffel F. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vis Res. 1997;37(6):659–68. Epub 1997/03/01.

    Article  CAS  PubMed  Google Scholar 

  91. Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–19.

    Article  CAS  PubMed  Google Scholar 

  92. Wallman J, Wildsoet C, Xu A, Gottlieb MD, Nickla DL, Marran L, et al. Moving the retina: choroidal modulation of refractive state. Vis Res. 1995;35(1):37–50. Epub 1995/01/01.

    Article  CAS  PubMed  Google Scholar 

  93. Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vis Res. 1995;35(9):1175–94. Epub 1995/05/01.

    Article  CAS  PubMed  Google Scholar 

  94. Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000;41(6):1249–58. Epub 2000/05/08.

    CAS  PubMed  Google Scholar 

  95. Chakraborty R, Read SA, Collins MJ. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes. Exp Eye Res. 2012;103:47–54. Epub 2012/09/14.

    Article  CAS  PubMed  Google Scholar 

  96. Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52(8):5121–9. Epub 2011/05/17.

    Article  PubMed  Google Scholar 

  97. Nickla DL, Damyanova P, Lytle G. Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME. Exp Eye Res. 2009;88(6):1092–9. Epub 2009/05/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nickla DL, Totonelly K. Choroidal thickness predicts ocular growth in normal chicks but not in eyes with experimentally altered growth. Clin Exp Optom. 2015;98:564–70.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nickla DL, Totonelly K. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp Eye Res. 2011;93(5):782–5. Epub 2011/08/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nickla DL, Wilken E, Lytle G, Yom S, Mertz J. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms. Exp Eye Res. 2006;83(2):456–64. Epub 2006/04/26.

    Article  CAS  PubMed  Google Scholar 

  101. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68. Epub 2010/01/02.

    Article  PubMed  Google Scholar 

  102. Sorsby A, Sheridan M, Leary GA. Refraction and its components in twins. Memo Med Res Counc. 1961;301(Special):1–43.

    Google Scholar 

  103. Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res. 2005;24(1):1–38. Epub 2004/11/24.

    Article  PubMed  Google Scholar 

  104. Morgan IG, Rose KA. Myopia: is the nature-nurture debate finally over? Clin Exp Optom. 2019;102:3–17.

    Article  PubMed  Google Scholar 

  105. Hysi PG, Choquet H, Khawaja AP, et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet. 2020;52:401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379:1739–48.

    Article  PubMed  Google Scholar 

  107. Wojciechowski R. Nature and nurture: the complex genetics of myopia and refractive error. Clin Genet. 2011;79(4):301–20. Epub 2010/12/16.

    Article  CAS  PubMed  Google Scholar 

  108. Flitcroft DI, Loughman J, Wildsoet CF, Williams C, Guggenheim JA, Consortium C. Novel myopia genes and pathways identified from syndromic forms of myopia. Invest Ophthalmol Vis Sci. 2018;59:338–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tedja MS, Wojciechowski R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet. 2018;50:834–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wojciechowski R, Hysi PG. Focusing in on the complex genetics of myopia. PLoS Genet. 2013;9:e1003442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119(2):347–54.

    Article  PubMed  Google Scholar 

  112. Yam JC, Jiang Y, Tang SM, et al. Low-Concentration Atropine for Myopia Progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126:113–24.

    Article  PubMed  Google Scholar 

  113. Fang YT, Chou YJ, Pu C, Lin PJ, Liu TL, Huang N, et al. Prescription of atropine eye drops among children diagnosed with myopia in Taiwan from 2000 to 2007: a nationwide study. Eye (Lond). 2013;27(3):418–24. Epub 2013/01/05.

    Article  CAS  Google Scholar 

  114. French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68.

    Article  CAS  PubMed  Google Scholar 

  115. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet. 2010;42(10):897–901. Epub 2010/09/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guggenheim JA, Ghorbani Mojarrad N, Williams C, Flitcroft DI. Genetic prediction of myopia: prospects and challenges. Ophthalmic Physiol Opt. 2017;37:549–56.

    Article  PubMed  Google Scholar 

  117. Stone RA, Khurana TS. Gene profiling in experimental models of eye growth: clues to myopia pathogenesis. Vis Res. 2010;50(23):2322–33. Epub 2010/04/07.

    Article  CAS  PubMed  Google Scholar 

  118. Stone RA, Pardue MT, Iuvone PM, Khurana TS. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res. 2013;114:35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen YP, Hocking PM, Wang L, Povazay B, Prashar A, To CH, et al. Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Invest Ophthalmol Vis Sci. 2011;52(7):4003–11. Epub 2011/03/26.

    Article  PubMed  Google Scholar 

  120. Chen YP, Prashar A, Erichsen JT, To CH, Hocking PM, Guggenheim JA. Heritability of ocular component dimensions in chickens: genetic variants controlling susceptibility to experimentally induced myopia and pretreatment eye size are distinct. Invest Ophthalmol Vis Sci. 2011;52(7):4012–20. Epub 2011/03/26.

    Article  PubMed  Google Scholar 

  121. Chen YP, Prashar A, Hocking PM, Erichsen JT, To CH, Schaeffel F, et al. Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens. Invest Ophthalmol Vis Sci. 2010;51(2):651–7. Epub 2009/09/10.

    Article  PubMed  Google Scholar 

  122. Au Eong KG, Tay TH, Lim MK. Race, culture and Myopia in 110,236 young Singaporean males. Singapore Med J. 1993;34:29–32.

    CAS  PubMed  Google Scholar 

  123. Koh V, Yang A, Saw SM, et al. Differences in prevalence of refractive errors in young Asian males in Singapore between 1996-1997 and 2009-2010. Ophthalmic Epidemiol. 2014;21:247–55.

    Article  PubMed  Google Scholar 

  124. Goh PP, Abqariyah Y, Pokharel GP, Ellwein LB. Refractive error and visual impairment in school-age children in Gombak District, Malaysia. Ophthalmology. 2005;112:678–85.

    Article  PubMed  Google Scholar 

  125. Saxena R, Vashist P, Tandon R, et al. Prevalence of myopia and its risk factors in urban school children in Delhi: the North India Myopia Study (NIM Study). PLoS One. 2015;10:e0117349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hawthorne FA, Young TL. Genetic contributions to myopic refractive error: insights from human studies and supporting evidence from animal models. Exp Eye Res. 2013;114:141–9.

    Article  CAS  PubMed  Google Scholar 

  127. Chua SY, Sabanayagam C, Cheung YB, et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic Physiol Opt. 2016;36:388–94.

    Article  PubMed  Google Scholar 

  128. Sankaridurg PR, Holden BA. Practical applications to modify and control the development of ametropia. Eye (Lond). 2014;28:134–41.

    Article  CAS  Google Scholar 

  129. Bedrossian RH. The effect of atropine on myopia. Ophthalmology. 1979;86(5):713–9. Epub 1979/05/01.

    Article  CAS  PubMed  Google Scholar 

  130. Fang YT, Chou YJ, Pu C, et al. Prescription of atropine eye drops among children diagnosed with myopia in Taiwan from 2000 to 2007: a nationwide study. Eye (Lond). 2013;27:418–24.

    Article  CAS  Google Scholar 

  131. Lind GJ, Chew SJ, Marzani D, Wallman J. Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes. Invest Ophthalmol Vis Sci. 1998;39(12):2217–31. Epub 1998/11/06.

    CAS  PubMed  Google Scholar 

  132. Fischer AJ, Miethke P, Morgan IG, Stell WK. Cholinergic amacrine cells are not required for the progression and atropine-mediated suppression of form-deprivation myopia. Brain Res. 1998;794:48–60.

    Article  CAS  PubMed  Google Scholar 

  133. Millar TJ, Ishimoto I, Boelen M, Epstein ML, Johnson CD, Morgan IG. The toxic effects of ethylcholine mustard aziridinium ion on cholinergic cells in the chicken retina. J Neurosci. 1987;7:343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fischer AJ, McGuire JJ, Schaeffel F, Stell WK. Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat Neurosci. 1999;2(8):706–12. Epub 1999/07/21.

    Article  CAS  PubMed  Google Scholar 

  135. Ashby R, McCarthy CS, Maleszka R, Megaw P, Morgan IG. A muscarinic cholinergic antagonist and a dopamine agonist rapidly increase ZENK mRNA expression in the form-deprived chicken retina. Exp Eye Res. 2007;85(1):15–22. Epub 2007/05/15.

    Article  CAS  PubMed  Google Scholar 

  136. Cottriall CL, Truong HT, McBrien NA. Inhibition of myopia development in chicks using himbacine: a role for M(4) receptors? Neuroreport. 2001;12(11):2453–6. Epub 2001/08/10.

    Article  CAS  PubMed  Google Scholar 

  137. McBrien NA, Arumugam B, Gentle A, Chow A, Sahebjada S. The M4 muscarinic antagonist MT-3 inhibits myopia in chick: evidence for site of action. Ophthalmic Physiol Opt. 2011;31:529–39.

    Article  PubMed  Google Scholar 

  138. Arumugam B, McBrien NA. Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew. Invest Ophthalmol Vis Sci. 2012;53(9):5827–37. Epub 2012/07/28

    Article  CAS  PubMed  Google Scholar 

  139. Luft WA, Ming Y, Stell WK. Variable effects of previously untested muscarinic receptor antagonists on experimental myopia. Invest Ophthalmol Vis Sci. 2003;44:1330–8.

    Article  PubMed  Google Scholar 

  140. Carr BJ, Mihara K, Ramachandran R, et al. Myopia-inhibiting concentrations of Muscarinic receptor antagonists block activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci. 2018;59:2778–91.

    Article  CAS  PubMed  Google Scholar 

  141. Carr BJ, Nguyen CT, Stell WK. Alpha2 -adrenoceptor agonists inhibit form-deprivation myopia in the chick. Clin Exp Optom. 2019;102:418–25.

    Article  PubMed  PubMed Central  Google Scholar 

  142. McCarthy CS, Megaw P, Devadas M, Morgan IG. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res. 2007;84(1):100–7. Epub 2006/11/11

    Article  CAS  PubMed  Google Scholar 

  143. Winawer J, Wallman J. Temporal constraints on lens compensation in chicks. Vision Res. 2002;42:2651–68.

    Article  PubMed  Google Scholar 

  144. Winawer J, Zhu X, Choi J, Wallman J. Ocular compensation for alternating myopic and hyperopic defocus. Vision Res. 2005;45:1667–77.

    Article  PubMed  Google Scholar 

  145. Zhu X, Winawer JA, Wallman J. Potency of myopic defocus in spectacle lens compensation. Invest Ophthalmol Vis Sci. 2003;44(7):2818–27. Epub 2003/06/26.

    Article  PubMed  Google Scholar 

  146. Tse DY, Lam CS, Guggenheim JA, Lam C, Li KK, Liu Q, et al. Simultaneous defocus integration during refractive development. Invest Ophthalmol Vis Sci. 2007;48(12):5352–9. Epub 2007/12/07.

    Article  PubMed  Google Scholar 

  147. Tse DY, To CH. Graded competing regional myopic and hyperopic defocus produces summated emmetropization set points in chick. Invest Ophthalmol Vis Sci. 2011;52:8056–62.

    Article  PubMed  Google Scholar 

  148. Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014;98:40–5.

    Article  PubMed  Google Scholar 

  149. Megaw P, Morgan I, Boelen M. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. J Neurochem. 2001;76(6):1636–44. Epub 2001/03/22.

    Article  CAS  PubMed  Google Scholar 

  150. Ashby R, Kozulin P, Megaw PL, Morgan IG. Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens. Mol Vis. 2010;16:639–49. Epub 2010/04/21.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Thomson K, Karouta C, Ashby R. Form-deprivation and lens-induced myopia are similarly affected by pharmacological manipulation of the dopaminergic system in chicks. Invest Ophthalmol Vis Sci. 2020;61:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thomson K, Karouta C, Ashby R. Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks. Exp Eye Res. 2020;200:108233.

    Article  CAS  PubMed  Google Scholar 

  153. Thomson K, Karouta C, Morgan I, Kelly T, Ashby R. Effectiveness and safety of topical levodopa in a chick model of myopia. Sci Rep. 2019;9:18345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Thomson K, Morgan I, Karouta C, Ashby R. Levodopa inhibits the development of lens-induced myopia in chicks. Sci Rep. 2020;10:13242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Thomson K, Morgan I, Kelly T, Karouta C, Ashby R. Coadministration With carbidopa enhances the antimyopic effects of levodopa in chickens. Invest Ophthalmol Vis Sci. 2021;62:25.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Nickla DL, Sarfare S, McGeehan B, et al. Visual conditions affecting eye growth alter diurnal levels of vitreous DOPAC. Exp Eye Res. 2020;200:108226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–19.

    Article  CAS  PubMed  Google Scholar 

  158. Mathis U, Schaeffel F. Glucagon-related peptides in the mouse retina and the effects of deprivation of form vision. Graefes Arch Clin Exp Ophthalmol. 2007;245:267–75.

    Article  CAS  PubMed  Google Scholar 

  159. Vessey KA, Lencses KA, Rushforth DA, Hruby VJ, Stell WK. Glucagon receptor agonists and antagonists affect the growth of the chick eye: a role for glucagonergic regulation of emmetropization? Invest Ophthalmol Vis Sci. 2005;46:3922–31.

    Article  PubMed  Google Scholar 

  160. Vessey KA, Rushforth DA, Stell WK. Glucagon- and secretin-related peptides differentially alter ocular growth and the development of form-deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2005;46:3932–42.

    Article  PubMed  Google Scholar 

  161. Hoogerheide J, Rempt F, Hoogenboom WP. Acquired myopia in young pilots. Ophthalmologica. 1971;163(4):209–15. Epub 1971/01/01.

    Article  CAS  PubMed  Google Scholar 

  162. Atchison DA, Rosen R. The possible role of peripheral refraction in development of myopia. Optom Vis Sci. 2016;93:1042–4.

    Article  PubMed  Google Scholar 

  163. Smith EL 3rd, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49:2386–92.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Smith EL 3rd, Hung LF, Huang J, Blasdel TL, Humbird TL, Bockhorst KH. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci. 2010;51(8):3864–73. Epub 2010/03/12.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Smith EL 3rd, Ramamirtham R, Qiao-Grider Y, et al. Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci. 2007;48:3914–22.

    Article  PubMed  Google Scholar 

  166. Troilo D, Smith EL 3rd, Nickla DL, et al. IMI - report on experimental Models of emmetropization and myopia. Invest Ophthalmol Vis Sci. 2019;60:M31–88.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sng CC, Lin XY, Gazzard G, Chang B, Dirani M, Chia A, et al. Peripheral refraction and refractive error in Singapore Chinese children. Invest Ophthalmol Vis Sci. 2011;52(2):1181–90. Epub 2010/10/12.

    Article  PubMed  Google Scholar 

  168. Sng CC, Lin XY, Gazzard G, Chang B, Dirani M, Lim L, et al. Change in peripheral refraction over time in Singapore Chinese children. Invest Ophthalmol Vis Sci. 2011;52(11):7880–7. Epub 2011/08/30.

    Article  PubMed  Google Scholar 

  169. Atchison DA, Li SM, Li H, et al. Relative peripheral hyperopia does not predict development and progression of myopia in children. Invest Ophthalmol Vis Sci. 2015;56:6162–70.

    Article  PubMed  Google Scholar 

  170. Sankaridurg P, Donovan L, Varnas S, Ho A, Chen X, Martinez A, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;87(9):631–41. Epub 2010/07/14.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sankaridurg P, Holden B, Smith E 3rd, Naduvilath T, Chen X, de la Jara PL, et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest Ophthalmol Vis Sci. 2011;52(13):9362–7. Epub 2011/11/01.

    Article  PubMed  Google Scholar 

  172. Kanda H, Oshika T, Hiraoka T, et al. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial. Jpn J Ophthalmol. 2018;62:537–43.

    Article  CAS  PubMed  Google Scholar 

  173. Karouta C, Ashby RS. Correlation between light levels and the development of deprivation myopia. Invest Ophthalmol Vis Sci. 2015;56:299–309.

    Article  Google Scholar 

  174. Norton TT, Siegwart JT Jr. Light levels, refractive development, and myopia--a speculative review. Exp Eye Res. 2013;114:48–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Smith EL 3rd, Hung LF, Arumugam B, Huang J. Negative lens-induced myopia in infant monkeys: effects of high ambient lighting. Invest Ophthalmol Vis Sci. 2013;54:2959–69.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Wu PC, Chen CT, Lin KK, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology. 2018;125:1239–50.

    Article  PubMed  Google Scholar 

  177. Jin JX, Hua WJ, Jiang X, et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun Eye Care Study. BMC Ophthalmol. 2015;15:73.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120:1080–5.

    Article  PubMed  Google Scholar 

  179. Wu PC, Chen CT, Chang LC, et al. Increased time outdoors is followed by reversal of the long-term trend to reduced visual acuity in Taiwan primary school students. Ophthalmology. 2020;127:1462.

    Article  PubMed  Google Scholar 

  180. Guggenheim JA, Williams C, Northstone K, et al. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Invest Ophthalmol Vis Sci. 2014;55:8550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cuellar-Partida G, Williams KM, Yazar S, et al. Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. Int J Epidemiol. 2017;46:1882–90.

    Article  PubMed  PubMed Central  Google Scholar 

  182. McBrien NA. Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp Eye Res. 2013;114:128–40.

    Article  CAS  PubMed  Google Scholar 

  183. Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996;37(7):1380–95. Epub 1996/06/01.

    CAS  PubMed  Google Scholar 

  184. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. J Biol Chem. 2009;284(4):2072–9. Epub 2008/11/18.

    Article  CAS  PubMed  Google Scholar 

  185. McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci. 2009;86(1):E23–30. Epub 2008/12/24.

    Article  PubMed  Google Scholar 

  186. Metlapally R, Jobling AI, Gentle A, McBrien NA. Characterization of the integrin receptor subunit profile in the mammalian sclera. Mol Vis. 2006;12:725–34. Epub 2006/07/25.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morgan, I.G., Rose, K.A., Ashby, R.S. (2021). Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia. In: Spaide, R.F., Ohno-Matsui, K., Yannuzzi, L.A. (eds) Pathologic Myopia. Springer, Cham. https://doi.org/10.1007/978-3-030-74334-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74334-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74333-8

  • Online ISBN: 978-3-030-74334-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics