Skip to main content

Choroidal Neovascularization

  • Chapter
  • First Online:
Pathologic Myopia
  • 965 Accesses

Abstract

High myopia is associated with excessive and progressive elongation of the globe, resulting in a variety of fundus changes that lead to visual impairment; one of the most common and severe is choroidal neovascularization. It is manifested by loss of acuity, scotomata, and distortion of vision. Several factors are frequently found in myopic CNV as compared with other common forms of CNV, such as that due to age-related macular degeneration. A common precursor to neovascularization is lacquer cracks, which are breaks in the Bruch’s membrane. The size of the neovascularization is often small in highly myopic eyes, there is less evident leakage during fluorescein angiography, and optical coherence tomography usually does not show much fluid in either the subretinal space or within the retina. Unfortunately the patients generally are young, in the most productive periods of their lives. Treatment for CNV used to involve thermal laser photocoagulation, which caused expanding areas of atrophy. Photodynamic therapy has been used but with disappointing results. Introduction of therapies directed against vascular endothelial growth factor caused a large change in the outcomes for patients with myopic CNV. In this chapter the characteristics of myopic CNV are presented. The history of treatments for myopic CNV is discussed in detail, and a general approach to patients with myopic CNV is shown. Finally, a hypothesis is generated to explain the frequent observation of atrophy following treatment for myopic choroidal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs E. Der centrale schwarze Fleck bei Myopie. Z Augenheilkunde. 1901;5:171–8.

    Google Scholar 

  2. Lloyd RI. Clinical studies of the myopic macula. Trans Am Ophthalmol Soc. 1953;51:273–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Focosi M, Brancato R, Frosini R. Serous maculopathy of myopes. Fluorescein retinography and possibilities for treatment. Doc Ophthalmol. 1973;34:157–64.

    Article  CAS  PubMed  Google Scholar 

  4. Levy JH, Pollock HM, Curtin BJ. The Fuchs’ spot: an ophthalmoscopic and fluorescein angiographic study. Ann Ophthalmol. 1977;9:1433–43.

    CAS  PubMed  Google Scholar 

  5. Vision Institute Institute. The impact of myopia and high myopia: report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia. University of New South Wales, Sydney, Australia, 16–18 March 2015. Geneva World Health Organization. 2017.

    Google Scholar 

  6. United Nations Department of Economic and Social Affairs. World population prospects 2019 highlights. New York: United Nations; 2019.

    Google Scholar 

  7. Wong TY, Ferreira A, Hughes R, et al. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol. 2014;157(1):9–25.e12.

    Article  PubMed  Google Scholar 

  8. Buch H, Vinding T, La Cour M, et al. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: the Copenhagen City Eye Study. Ophthalmology. 2004;111(1):53–61.

    Article  PubMed  Google Scholar 

  9. Cedrone C, Culasso F, Cesareo M, et al. Incidence of blindness and low vision in a sample population: the Priverno Eye Study, Italy. Ophthalmology. 2003;110(3):584–8.

    Article  PubMed  Google Scholar 

  10. Krumpaszky HG, Lüdtke R, Mickler A, Klauss V, Selbmann HK. Blindness incidence in Germany. A population-based study from Württemberg-Hohenzollern. Ophthalmologica. 1999;213(3):176–82.

    Article  CAS  PubMed  Google Scholar 

  11. Xu L, Wang Y, Li Y, et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology. 2006;113(7):1134.e1–11.

    Article  Google Scholar 

  12. Hsu WM, Cheng CY, Liu JH, et al. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: the Shihpai Eye Study. Ophthalmology. 2004;111(1):62–9.

    Article  PubMed  Google Scholar 

  13. Iwase A, Araie M, Tomidokoro A, et al. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006;113(8):1354–62.

    Article  PubMed  Google Scholar 

  14. Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up. Ophthalmology. 2003;110:1297–305.

    Article  PubMed  Google Scholar 

  15. Secretan M, Kuhn D, Soubrane G, Coscas G. Long-term visual outcome of choroidal neovascularization in pathologic myopia: natural history and laser treatment. Eur J Ophthalmol. 1997;7:307–16.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida T, Ohno-Matsui K, Ohtake Y, et al. Long-term visual prognosis of choroidal neovascularization in high myopia: a comparison between age groups. Ophthalmology. 2002;109:712–9.

    Article  PubMed  Google Scholar 

  17. Klein RM, Curtin BJ. Lacquer crack lesions in pathologic myopia. Am J Ophthalmol. 1975;79:386–92.

    Article  CAS  PubMed  Google Scholar 

  18. Klein RM, Green S. The development of lacquer cracks in pathologic myopia. Am J Ophthalmol. 1988;106:282–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hayasaka S, Uchida M, Setogawa T. Subretinal hemorrhages with or without choroidal neovascularization in the maculas of patients with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 1990;228:277–80.

    Article  CAS  PubMed  Google Scholar 

  20. Curtin BJ. The myopias. Basic science and clinical management. Philadelphia: Harper & Row; 1985.

    Google Scholar 

  21. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148:445–50.

    Article  PubMed  Google Scholar 

  22. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50:3876–80.

    Article  PubMed  Google Scholar 

  23. Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5536–40.

    Article  PubMed  Google Scholar 

  24. Nishida Y, Fujiwara T, Imamura Y, Lima LH, Kurosaka D, Spaide RF. Choroidal thickness and visual acuity in highly myopic eyes. Retina. 2012;32:1229–36.

    Article  PubMed  Google Scholar 

  25. Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol. 2003;87:570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ikuno Y, Sayanagi K, Soga K, et al. Lacquer crack formation and choroidal neovascularization in pathologic myopia. Retina. 2008;28:1124–31.

    Article  PubMed  Google Scholar 

  27. Heriot WJ, Henkind P, Bellhorn RW, Burns MS. Choroidal neovascularization can digest Bruch’s membrane. A prior break is not essential. Ophthalmology. 1984;91:1603–8.

    Article  CAS  PubMed  Google Scholar 

  28. Verteporfin in Photodynamic Therapy Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial – VIP report no. 1. Ophthalmology. 2001;108:841–52.

    Article  Google Scholar 

  29. Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2001;131:541–60.

    Article  Google Scholar 

  30. Hayashi K, Shimada N, Moriyama M, Hayashi W, Tokoro T, Ohno-Matsui K. Two-year outcomes of intravitreal bevacizumab for choroidal neovascularization in Japanese patients with pathologic myopia. Retina. 2012;32:687–95.

    Article  CAS  PubMed  Google Scholar 

  31. Lee DH, Kang HG, Lee SC, Kim M. Features of optical coherence tomography predictive of choroidal neovascularisation treatment response in pathological myopia in association with fluorescein angiography. Br J Ophthalmol. 2018;102(2):238–42.

    Article  PubMed  Google Scholar 

  32. Vance SK, Khan S, Klancnik JM, Freund KB. Characteristic spectral-domain optical coherence tomography findings of multifocal choroiditis. Retina. 2011;31:717–23.

    Article  PubMed  Google Scholar 

  33. Haen SP, Spaide RF. Fundus autofluorescence in multifocal choroiditis and panuveitis. Am J Ophthalmol. 2008;145:847–53.

    Article  PubMed  Google Scholar 

  34. Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol. 1971;71:42–53.

    Article  CAS  PubMed  Google Scholar 

  35. Rabb MF, Garoon I, LaFranco FP. Myopic macular degeneration. Int Ophthalmol Clin. 1981;21:51–69.

    Article  CAS  PubMed  Google Scholar 

  36. Hotchkiss ML, Fine SL. Pathologic myopia and choroidal neovascularization. Am J Ophthalmol. 1981;91:177–83.

    Article  CAS  PubMed  Google Scholar 

  37. Fried M, Siebert A, Meyer-Schwickerath G. A natural history of Fuchs’ spot: a long-term follow-up study. Doc Ophthalmol. 1981;28:215–21.

    Google Scholar 

  38. Cohen SY, Laroche A, Leguen Y, Soubrane G, Coscas GJ. Etiology of choroidal neovascularization in young patients. Ophthalmology. 1996;103:1241–4.

    Article  CAS  PubMed  Google Scholar 

  39. Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma. Am J Ophthalmol. 1997;123:181–7.

    Article  CAS  PubMed  Google Scholar 

  40. Shih YF, Ho TC, Hsiao CK, Lin LL. Visual outcomes for high myopic patients with or without myopic maculopathy: a 10 year follow up study. Br J Ophthalmol. 2006;90:546–50.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109:704–11.

    Article  PubMed  Google Scholar 

  42. Gao LQ, Liu W, Liang YB, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study. Arch Ophthalmol. 2011;129:1199–204.

    Article  PubMed  Google Scholar 

  43. Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina. 1992;12:127–33.

    Article  CAS  PubMed  Google Scholar 

  44. Wright RE, Freudenthal W. Angioid streaks with pseudoxanthoma elasticum (Gronblad-Strandberg Syndrome). Proc R Soc Med. 1943;36:290–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol. 1999;44(Suppl 1):S10–32.

    Article  PubMed  Google Scholar 

  46. Grossniklaus HE, Green WR. Choroidal neovascularization. Am J Ophthalmol. 2004;137:496–503.

    Article  PubMed  Google Scholar 

  47. Hampton GR, Kohen D, Bird AC. Visual prognosis of disciform degeneration in myopia. Ophthalmology. 1983;90:923–6.

    Article  CAS  PubMed  Google Scholar 

  48. Avila MP, Weiter JJ, Jalkh AE, Trempe CL, Pruett RC, Schepens CL. Natural history of choroidal neovascularization in degenerative myopia. Ophthalmology. 1984;91:1573–81.

    Article  CAS  PubMed  Google Scholar 

  49. Tabandeh H, Flynn HW Jr, Scott IU, et al. Visual acuity outcomes of patients 50 years of age and older with high myopia and untreated choroidal neovascularization. Ophthalmology. 1999;106:2063–7.

    Article  CAS  PubMed  Google Scholar 

  50. Bottoni F, Tilanus M. The natural history of juxtafoveal and subfoveal choroidal neovascularization in high myopia. Int Ophthalmol. 2001;24:249–55.

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi K, Ohno-Matsui K, Yoshida T, et al. Characteristics of patients with a favorable natural course of myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2005;243:13–9.

    Article  PubMed  Google Scholar 

  52. Gass JD. Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol. 1967;63(Suppl):1–139.

    Google Scholar 

  53. L’Esperance FA Jr. The treatment of ophthalmic vascular disease by argon laser photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1969;73:1077–96.

    PubMed  Google Scholar 

  54. L’Esperance FA Jr. Clinical photocoagulation with the krypton laser. Arch Ophthalmol. 1972;87:693–700.

    Article  PubMed  Google Scholar 

  55. Little HL, Zweng HC, Peabody RR. Argon laser slit-lamp retinal photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1970;74:85–97.

    CAS  PubMed  Google Scholar 

  56. Patz A, Maumenee AJ, Ryan SJ. Argon laser photocoagulation in macular diseases. Trans Am Ophthalmol Soc. 1971;69:71–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gass JD. Photocoagulation of macular lesions. Trans Am Acad Ophthalmol Otolaryngol. 1971;75:580–608.

    CAS  PubMed  Google Scholar 

  58. Macular Photocoagulation Study Group. Argon laser photocoagulation for senile macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol. 1982;100:912–8.

    Article  Google Scholar 

  59. Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Three-year results from randomized clinical trials. Arch Ophthalmol. 1986;104:694–701.

    Article  Google Scholar 

  60. Macular Photocoagulation Study Group. Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Arch Ophthalmol. 1994;112:500–9.

    Article  Google Scholar 

  61. Zimmer-Galler IE, Bressler NM, Bressler SB. Treatment of choroidal neovascularization: updated information from recent macular photocoagulation study group reports. Int Ophthalmol Clin. 1995;35:37–57.

    CAS  PubMed  Google Scholar 

  62. Blackhurst DW, Maguire MG. Reproducibility of refraction and visual acuity measurement under a standard protocol. The Macular Photocoagulation Study Group. Retina. 1989;9:163–9.

    Article  CAS  PubMed  Google Scholar 

  63. Berkow JW. Subretinal neovascularization in senile macular degeneration. Am J Ophthalmol. 1984;97:143–7.

    Article  CAS  PubMed  Google Scholar 

  64. Willan AR, Cruess AF, Ballantyne M. Argon green vs. krypton red laser photocoagulation for extrafoveal choroidal neovascularization secondary to age-related macular degeneration: 3-year results of a multicentre randomized trial. Canadian Ophthalmology Study Group. Can J Ophthalmol. 1996;31:11–7.

    CAS  PubMed  Google Scholar 

  65. Jalkh AE, Weiter JJ, Trempe CL, Pruett RC, Schepens CL. Choroidal neovascularization in degenerative myopia: role of laser photocoagulation. Ophthalmic Surg. 1987;18:721–5.

    CAS  PubMed  Google Scholar 

  66. Pece A, Brancato R, Avanza P, Camesasca F, Galli L. Laser photocoagulation of choroidal neovascularization in pathologic myopia: long-term results. Int Ophthalmol. 1994;18:339–44.

    Article  PubMed  Google Scholar 

  67. Fardeau C, Soubrane G, Coscas G. Photocoagulation des néo-vaisseaux sous-rétiniens compliquant la dégénérescence myopique. Bull Soc Ophtalmol Fr. 1992;92:239–42.

    Google Scholar 

  68. Ruiz-Moreno JM, Montero JA. Long-term visual acuity after argon green laser photocoagulation of juxtafoveal choroidal neovascularization in highly myopic eyes. Eur J Ophthalmol. 2002;12:117–22.

    Article  CAS  PubMed  Google Scholar 

  69. Brancato R, Pece A, Avanza P, Radrizzani E. Photocoagulation scar expansion after laser therapy for choroidal neovascularization in degenerative myopia. Retina. 1990;10:239–43.

    Article  CAS  PubMed  Google Scholar 

  70. de Juan E Jr, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol. 1988;105:25–9.

    Article  PubMed  Google Scholar 

  71. Berger AS, Kaplan HJ. Clinical experience with the surgical removal of subfoveal neovascular membranes. Short-term postoperative results. Ophthalmology. 1992;99:969–75.

    Article  CAS  PubMed  Google Scholar 

  72. Thomas MA, Grand MG, Williams DF, Lee CM, Pesin SR, Lowe MA. Surgical management of subfoveal choroidal neovascularization. Ophthalmology. 1992;99:952–68.

    Article  CAS  PubMed  Google Scholar 

  73. Bressler NM, Bressler SB, Hawkins BS, et al. Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol. 2000;130:387–407.

    CAS  PubMed  Google Scholar 

  74. Hawkins BS, Bressler NM, Miskala PH, et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology. 2004;111:1967–80.

    Article  PubMed  Google Scholar 

  75. Bressler NM, Bressler SB, Childs AL, et al. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration: ophthalmic findings: SST report no. 13. Ophthalmology. 2004;111:1993–2006.

    Article  PubMed  Google Scholar 

  76. Hawkins BS, Bressler NM, Bressler SB, et al. Surgical removal vs observation for subfoveal choroidal neovascularization, either associated with the ocular histoplasmosis syndrome or idiopathic: I. Ophthalmic findings from a randomized clinical trial: Submacular Surgery Trials (SST) Group H Trial: SST report no. 9. Arch Ophthalmol. 2004;122:1597–611.

    Article  PubMed  Google Scholar 

  77. Bass EB, Gilson MM, Mangione CM, et al. Surgical removal vs observation for idiopathic or ocular histoplasmosis syndrome-associated subfoveal choroidal neovascularization: vision preference value scale findings from the randomized SST Group H Trial: SST report no. 17. Arch Ophthalmol. 2008;126:1626–32.

    Article  PubMed  Google Scholar 

  78. Fujii GY, de Juan E, Thomas MA, Pieramici DJ, Humayun MS, Au Eong KG. Limited macular translocation for the management of subfoveal retinal pigment epithelial loss after submacular surgery. Am J Ophthalmol. 2001;131:272–5.

    Article  CAS  PubMed  Google Scholar 

  79. Ohji M, Fujikado T, Kusaka S, et al. Comparison of three techniques of foveal translocation in patients with subfoveal choroidal neovascularization resulting from age-related macular degeneration. Am J Ophthalmol. 2001;132:888–96.

    Article  CAS  PubMed  Google Scholar 

  80. Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology. 2004;111:1715–24.

    Article  PubMed  Google Scholar 

  81. Cahill MT, Stinnett SS, Banks AD, Freedman SF, Toth CA. Quality of life after macular translocation with 360 degrees peripheral retinectomy for age-related macular degeneration. Ophthalmology. 2005;112:144–51.

    Article  PubMed  Google Scholar 

  82. Lüke M, Ziemssen F, Völker M, et al. Full macular translocation (FMT) versus photodynamic therapy (PDT) with verteporfin in the treatment of neovascular age-related macular degeneration: 2-year results of a prospective, controlled, randomised pilot trial (FMT-PDT). Graefes Arch Clin Exp Ophthalmol. 2009;247:745–54.

    Article  PubMed  Google Scholar 

  83. Lüke M, Ziemssen F, Bartz-Schmidt KU, Gelisken F. Quality of life in a prospective, randomised pilot-trial of photodynamic therapy versus full macular translocation in treatment of neovascular age-related macular degeneration--a report of 1 year results. Graefes Arch Clin Exp Ophthalmol. 2007;245:1831–6.

    Article  PubMed  Google Scholar 

  84. Yamada Y, Miyamura N, Suzuma K, Kitaoka T. Long-term follow-up of full macular translocation for choroidal neovascularization. Am J Ophthalmol. 2010;149:453–7.e1.

    Article  PubMed  Google Scholar 

  85. Uemura A, Thomas MA. Subretinal surgery for choroidal neovascularization in patients with high myopia. Arch Ophthalmol. 2000;118(3):344–50.

    Article  CAS  PubMed  Google Scholar 

  86. Ruiz-Moreno JM, de la Vega C. Surgical removal of subfoveal choroidal neovascularisation in highly myopic patients. Br J Ophthalmol. 2001;85:1041–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hera R, Mouillon M, Gonzalvez B, Millet JY, Romanet JP. Surgery for choroidal subfoveal neovascularization in patients with severe myopia. Retrospective analysis of 17 patients. J Fr Ophtalmol. 2001;24:716–23.

    CAS  PubMed  Google Scholar 

  88. Hamelin N, Glacet-Bernard A, Brindeau C, Mimoun G, Coscas G, Soubrane G. Surgical treatment of subfoveal neovascularization in myopia: macular translocation vs surgical removal. Am J Ophthalmol. 2002;133:530–6.

    Article  PubMed  Google Scholar 

  89. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Arch Ophthalmol. 1999;117:1329–45.

    Article  Google Scholar 

  90. Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-TAP report 2. Arch Ophthalmol. 2001;119:198–207.

    CAS  PubMed  Google Scholar 

  91. Blinder KJ, Bradley S, Bressler NM, et al. Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1. Am J Ophthalmol. 2003;136:407–18.

    Article  CAS  PubMed  Google Scholar 

  92. Bressler NM, VAM Study Writing Committee. Verteporfin therapy in age-related macular degeneration (VAM): an open-label multicenter photodynamic therapy study of 4,435 patients. Retina. 2004;24:512–20.

    Article  Google Scholar 

  93. Blinder KJ, Blumenkranz MS, Bressler NM, Verteporfin in Photodynamic Therapy Study Group, et al. Verteporfin therapy of subfoveal choroidal neovascularisation in pathologic myopia: 2-year results of a randomized clinical trial – VIP report no. 3. Ophthalmology. 2003;110:667–72.

    Article  PubMed  Google Scholar 

  94. Bandello F, Blinder K, Bressler NM, et al. Verteporfin in photodynamic therapy: report no. 5. Ophthalmology. 2004;111:2144.

    Article  PubMed  Google Scholar 

  95. Lam DS, Chan WM, Liu DT, Fan DS, Lai WW, Chong KK. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularisation of pathologic myopia in Chinese eyes: a prospective series of 1 and 2 year follow up. Br J Ophthalmol. 2004;88:1315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gelisken F, Inhoffen W, Hermann A, Grisanti S, Bartz-Schmidt KU. Verteporfin photodynamic therapy for extrafoveal choroidal neovascularisation in pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2004;242:926–30.

    Article  CAS  PubMed  Google Scholar 

  97. Axer-Siegel R, Ehrlich R, Weinberger D, et al. Photodynamic therapy of subfoveal choroidal neovascularization in high myopia in a clinical setting: visual outcome in relation to age at treatment. Am J Ophthalmol. 2004;138:602–7.

    Article  PubMed  Google Scholar 

  98. Ergun E, Heinzl H, Stur M. Prognostic factors influencing visual outcome of photodynamic therapy for subfoveal choroidal neovascularization in pathologic myopia. Am J Ophthalmol. 2004;138:434–8.

    Article  PubMed  Google Scholar 

  99. Gibson J. Photodynamic therapy with verteporfin for juxtafoveal choroidal neovascularisation secondary to pathological myopia. Eye (Lond). 2005;19:829–30.

    Article  CAS  Google Scholar 

  100. Lam DS, Liu DT, Fan DS, Lai WW, So SF, Chan WM. Photodynamic therapy with verteporfin for juxtafoveal choroidal neovascularization secondary to pathologic myopia-1-year results of a prospective series. Eye (Lond). 2005;19:834–40.

    Article  CAS  Google Scholar 

  101. Schnurrbusch UE, Jochmann C, Wiedemann P, Wolf S. Quantitative assessment of the long-term effect of photodynamic therapy in patients with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2005;243:829–33.

    Article  PubMed  Google Scholar 

  102. Krebs I, Binder S, Stolba U, Glittenberg C, Brannath W, Goll A. Choroidal neovascularization in pathologic myopia: three-year results after photodynamic therapy. Am J Ophthalmol. 2005;140:416–25.

    Article  PubMed  Google Scholar 

  103. Pece A, Isola V, Vadala M, Matranga D. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization secondary to pathologic myopia: long-term study. Retina. 2006;26:746–51.

    Article  PubMed  Google Scholar 

  104. Ohno-Matsui K, Moriyama M, Hayashi K, Mochizuki M. Choroidal vein and artery occlusion following photodynamic therapy in eyes with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2006;244:1363–6.

    Article  PubMed  Google Scholar 

  105. Chen YS, Lin JY, Tseng SY, Yow SG, Hsu WJ, Tsai SC. Photodynamic therapy for Taiwanese patients with pathologic myopia: a 2-year follow-up. Retina. 2007;27:839–45.

    Article  PubMed  Google Scholar 

  106. Virgili G, Varano M, Giacomelli G, et al. Photodynamic therapy for nonsubfoveal choroidal neovascularization in 100 eyes with pathologic myopia. Am J Ophthalmol. 2007;143:77–82.

    Article  PubMed  Google Scholar 

  107. Pece A, Vadala M, Isola V, Matranga D. Photodynamic therapy with verteporfin for juxtafoveal choroidal neovascularization in pathologic myopia: a long-term follow-up study. Am J Ophthalmol. 2007;143:449–54.

    Article  CAS  PubMed  Google Scholar 

  108. Ruiz-Moreno JM, Montero JA, Gomez-Ulla F. Photodynamic therapy may worsen the prognosis of highly myopic choroidal neovascularisation treated by intravitreal bevacizumab. Br J Ophthalmol. 2009;93:1693–4.

    Article  CAS  PubMed  Google Scholar 

  109. Ruiz-Moreno JM, Amat P, Montero JA, Lugo F. Photodynamic therapy to treat choroidal neovascularisation in highly myopic patients: 4 years’ outcome. Br J Ophthalmol. 2008;92:792–4.

    Article  CAS  PubMed  Google Scholar 

  110. Hayashi K, Ohno-Matsui K, Shimada N, et al. Long-term results of photodynamic therapy for choroidal neovascularization in Japanese patients with pathologic myopia. Am J Ophthalmol. 2011;151:137–147.e1.

    Article  PubMed  Google Scholar 

  111. Coutinho AM, Silva RM, Nunes SG, Cachulo ML, Figueira JP, Murta JN. Photodynamic therapy in highly myopic eyes with choroidal neovascularization: 5 years of follow-up. Retina. 2011;31:1089–94.

    Article  CAS  PubMed  Google Scholar 

  112. Giansanti F, Virgili G, Donati MC, et al. Long-term results of photodynamic therapy for subfoveal choroidal neovascularization with pathologic myopia. Retina. 2012;32(8):1547–52.

    Article  CAS  PubMed  Google Scholar 

  113. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  114. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  115. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328–35.

    Article  CAS  PubMed  Google Scholar 

  116. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  117. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44.

    Article  CAS  PubMed  Google Scholar 

  118. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.

    Article  CAS  PubMed  Google Scholar 

  119. Singer MA, Awh CC, Sadda S, et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology. 2012;119:1175–83.

    Article  PubMed  Google Scholar 

  120. Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36:331–5.

    Article  PubMed  Google Scholar 

  121. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113:363–372.e5.

    Article  PubMed  Google Scholar 

  122. Spaide RF, Laud K, Fine HF, et al. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2006;26:383–90.

    Article  PubMed  Google Scholar 

  123. El-Mollayess GM, Noureddine BN, Bashshur ZF. Bevacizumab and neovascular age related macular degeneration: pathogenesis and treatment. Semin Ophthalmol. 2011;26:69–76.

    Article  PubMed  Google Scholar 

  124. http://online.wsj.com/article/SB119213222981256309.html?mod=home_health_right

  125. http://aging.senate.gov/letters/genentechcmsltr.pdf

  126. CATT Research Group, Martin DF, Maguire MG, Ying GS, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–908.

    Article  Google Scholar 

  127. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Fine SL, Ying GS, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119:1388–98.

    Article  Google Scholar 

  128. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.

    Article  PubMed  Google Scholar 

  129. Laud K, Spaide RF, Freund KB, Slakter J, Klancnik JM Jr. Treatment of choroidal neovascularization in pathologic myopia with intravitreal bevacizumab. Retina. 2006;26:960–3.

    Article  PubMed  Google Scholar 

  130. Yamamoto I, Rogers AH, Reichel E, Yates PA, Duker JS. Intravitreal bevacizumab (Avastin) as treatment for subfoveal choroidal neovascularisation secondary to pathological myopia. Br J Ophthalmol. 2007;91:157–60.

    Article  PubMed  Google Scholar 

  131. Sakaguchi H, Ikuno Y, Gomi F, et al. Intravitreal injection of bevacizumab for choroidal neovascularisation associated with pathological myopia. Br J Ophthalmol. 2007;91:161–5.

    Article  CAS  PubMed  Google Scholar 

  132. Hernández-Rojas ML, Quiroz-Mercado H, Dalma-Weiszhausz J, et al. Short-term effects of intravitreal bevacizumab for subfoveal choroidal neovascularization in pathologic myopia. Retina. 2007;27:707–12.

    PubMed  Google Scholar 

  133. Chan WM, Lai TY, Liu DT, Lam DS. Intravitreal bevacizumab (Avastin) for myopic choroidal neovascularization: six-month results of a prospective pilot study. Ophthalmology. 2007;114:2190–6.

    Article  PubMed  Google Scholar 

  134. Rensch F, Spandau UH, Schlichtenbrede F, et al. Intravitreal bevacizumab for myopic choroidal neovascularization. Ophthalmic Surg Lasers Imaging. 2008;39:182–5.

    Article  PubMed  Google Scholar 

  135. Silva RM, Ruiz-Moreno JM, Nascimento J, et al. Short-term efficacy and safety of intravitreal ranibizumab for myopic choroidal neovascularization. Retina. 2008;28:1117–23.

    Article  PubMed  Google Scholar 

  136. Arias L, Planas N, Prades S, et al. Intravitreal bevacizumab (Avastin) for choroidal neovascularisation secondary to pathological myopia: 6-month results. Br J Ophthalmol. 2008;92:1035–9.

    Article  CAS  PubMed  Google Scholar 

  137. Chang LK, Spaide RF, Brue C, Freund KB, Klancnik JM Jr, Slakter JS. Bevacizumab treatment for subfoveal choroidal neovascularization from causes other than age-related macular degeneration. Arch Ophthalmol. 2008;126:941–5.

    Article  CAS  PubMed  Google Scholar 

  138. Rheaume MA, Sebag M. Intravitreal bevacizumab for the treatment of choroidal neovascularization associated with pathological myopia. Can J Ophthalmol. 2008;43:576–80.

    Article  PubMed  Google Scholar 

  139. Wong D, Li KK. Avastin in myopic choroidal neovascularisation: is age the limit? Br J Ophthalmol. 2008;92:1011–2.

    Article  PubMed  Google Scholar 

  140. Ruiz-Moreno JM, Montero JA, Gomez-Ulla F, Ares S. Intravitreal bevacizumab to treat subfoveal choroidal neovascularisation in highly myopic eyes: 1-year outcome. Br J Ophthalmol. 2009;93:448–51.

    Article  CAS  PubMed  Google Scholar 

  141. Hayashi K, Ohno-Matsui K, Teramukai S, et al. Comparison of visual outcome and regression pattern of myopic choroidal neovascularization after intravitreal bevacizumab or after photodynamic therapy. Am J Ophthalmol. 2009;148:396–408.

    Article  CAS  PubMed  Google Scholar 

  142. Yodoi Y, Tsujikawa A, Nakanishi H, et al. Central retinal sensitivity after intravitreal injection of bevacizumab for myopic choroidal neovascularization. Am J Ophthalmol. 2009;147:816–24. 24.e1.

    Article  CAS  PubMed  Google Scholar 

  143. Ikuno Y, Soga K, Wakabayashi T, Gomi F. Angiographic changes after bevacizumab. Ophthalmology. 2009;116:2263.e1.

    Article  PubMed  Google Scholar 

  144. Hayashi K, Ohno-Matsui K, Shimada N, et al. Intravitreal bevacizumab on myopic choroidal neovascularization that was refractory to or had recurred after photodynamic therapy. Graefes Arch Clin Exp Ophthalmol. 2009;247:609–18.

    Article  CAS  PubMed  Google Scholar 

  145. Konstantinidis L, Mantel I, Pournaras JA, Zografos L, Ambresin A. Intravitreal ranibizumab (Lucentis) for the treatment of myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009;247:311–8.

    Article  CAS  PubMed  Google Scholar 

  146. Dithmar S, Schaal KB, Hoh AE, Schmidt S, Schutt F. Intravitreal bevacizumab for choroidal neovascularization due to pathological myopia. Ophthalmologe. 2009;106:527–30.

    Article  CAS  PubMed  Google Scholar 

  147. Chan WM, Lai TY, Liu DT, Lam DS. Intravitreal bevacizumab (Avastin) for myopic choroidal neovascularisation: 1-year results of a prospective pilot study. Br J Ophthalmol. 2009;93:150–4.

    Article  PubMed  Google Scholar 

  148. Ruiz-Moreno JM, Gomez-Ulla F, Montero JA, et al. Intravitreous bevacizumab to treat subfoveal choroidal neovascularization in highly myopic eyes: short-term results. Eye (Lond). 2009;23:334–8.

    Article  CAS  Google Scholar 

  149. Ikuno Y, Sayanagi K, Soga K, et al. Intravitreal bevacizumab for choroidal neovascularization attributable to pathological myopia: one-year results. Am J Ophthalmol. 2009;147:94–100.e1.

    Article  CAS  PubMed  Google Scholar 

  150. Sayanagi K, Ikuno Y, Soga K, Wakabayashi T, Tano Y. Marginal crack after intravitreal bevacizumab for myopic choroidal neovascularization. Acta Ophthalmol. 2009;87:460–3.

    Article  PubMed  Google Scholar 

  151. Cohen SY. Anti-VEGF drugs as the 2009 first-line therapy for choroidal neovascularization in pathologic myopia. Retina. 2009;29:1062–6.

    Article  PubMed  Google Scholar 

  152. Monés JM, Amselem L, Serrano A, Garcia M, Hijano M. Intravitreal ranibizumab for choroidal neovascularization secondary to pathologic myopia: 12-month results. Eye (Lond). 2009;23:1275–80.

    Article  CAS  Google Scholar 

  153. Gharbiya M, Allievi F, Mazzeo L, Gabrieli CB. Intravitreal bevacizumab treatment for choroidal neovascularization in pathologic myopia: 12-month results. Am J Ophthalmol. 2009;147:84–93.e1.

    Article  CAS  PubMed  Google Scholar 

  154. Wu PC, Chen YJ. Intravitreal injection of bevacizumab for myopic choroidal neovascularization: 1-year follow-up. Eye (Lond). 2009;23:2042–5.

    Article  CAS  Google Scholar 

  155. Lai TY, Chan WM, Liu DT, Lam DS. Intravitreal ranibizumab for the primary treatment of choroidal neovascularization secondary to pathologic myopia. Retina. 2009;29:750–6.

    Article  PubMed  Google Scholar 

  156. Ruiz-Moreno JM, Montero JA. Intravitreal bevacizumab to treat myopic choroidal neovascularization: 2-year outcome. Graefes Arch Clin Exp Ophthalmol. 2010;248:937–41.

    Article  CAS  PubMed  Google Scholar 

  157. Voykov B, Gelisken F, Inhoffen W, Voelker M, Bartz-Schmidt KU, Ziemssen F. Bevacizumab for choroidal neovascularization secondary to pathologic myopia: is there a decline of the treatment efficacy after 2 years? Graefes Arch Clin Exp Ophthalmol. 2010;248:543–50.

    Article  CAS  PubMed  Google Scholar 

  158. Lalloum F, Souied EH, Bastuji-Garin S, et al. Intravitreal ranibizumab for choroidal neovascularization complicating pathologic myopia. Retina. 2010;30:399–406.

    Article  PubMed  Google Scholar 

  159. Silva RM, Ruiz-Moreno JM, Rosa P, et al. Intravitreal ranibizumab for myopic choroidal neovascularization: 12-month results. Retina. 2010;30:407–12.

    Article  PubMed  Google Scholar 

  160. Vadala M, Pece A, Cipolla S, et al. Is ranibizumab effective in stopping the loss of vision for choroidal neovascularisation in pathologic myopia? A long-term follow-up study. Br J Ophthalmol. 2010;95:657–61.

    Article  PubMed  Google Scholar 

  161. Scupola A, Tiberti AC, Sasso P, et al. Macular functional changes evaluated with MP-1 microperimetry after intravitreal bevacizumab for subfoveal myopic choroidal neovascularization: one-year results. Retina. 2010;30:739–47.

    Article  PubMed  Google Scholar 

  162. Gharbiya M, Allievi F, Conflitti S, et al. Intravitreal bevacizumab for treatment of myopic choroidal neovascularization: the second year of a prospective study. Clin Ter. 2010;161:e87–93.

    CAS  PubMed  Google Scholar 

  163. Wakabayashi T, Ikuno Y, Gomi F. Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia. Retina. 2011;31:880–6.

    Article  CAS  PubMed  Google Scholar 

  164. Calvo-Gonzalez C, Reche-Frutos J, Donate J, Fernandez-Perez C, Garcia-Feijoo J. Intravitreal ranibizumab for myopic choroidal neovascularization: factors predictive of visual outcome and need for retreatment. Am J Ophthalmol. 2011;151:529–34.

    Article  CAS  PubMed  Google Scholar 

  165. Nakanishi H, Tsujikawa A, Yodoi Y, et al. Prognostic factors for visual outcomes 2-years after intravitreal bevacizumab for myopic choroidal neovascularization. Eye (Lond). 2011;25:375–81.

    Article  CAS  Google Scholar 

  166. Franqueira N, Cachulo ML, Pires I, et al. Long-term follow-up of myopic choroidal neovascularization treated with ranibizumab. Ophthalmologica. 2012;227:39–44.

    Article  CAS  PubMed  Google Scholar 

  167. Peiretti E, Vinci M, Fossarello M. Intravitreal bevacizumab as a treatment for choroidal neovascularisation secondary to myopia: 4-year study results. Can J Ophthalmol. 2012;47:28–33.

    Article  PubMed  Google Scholar 

  168. Gharbiya M, Cruciani F, Parisi F, Cuozzo G, Altimari S, Abdolrahimzadeh S. Long-term results of intravitreal bevacizumab for choroidal neovascularisation in pathological myopia. Br J Ophthalmol. 2012;96(8):1068–72.

    Article  PubMed  Google Scholar 

  169. Ruiz-Moreno JM, Montero JA, Arias L, et al. Twelve-month outcome after one intravitreal injection of bevacizumab to treat myopic choroidal neovascularization. Retina. 2010;30:1609–15.

    Article  PubMed  Google Scholar 

  170. Gharbiya M, Giustolisi R, Allievi F, et al. Choroidal neovascularization in pathologic myopia: intravitreal ranibizumab versus bevacizumab – a randomized controlled trial. Am J Ophthalmol. 2010;149:458–64.

    Article  CAS  PubMed  Google Scholar 

  171. Nor-Masniwati S, Shatriah I, Zunaina E. Single intravitreal ranibizumab for myopic choroidal neovascularization. Clin Ophthalmol. 2011;5:1079–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu TT, Kung YH. The 12-month outcome of three consecutive monthly intravitreal injections of ranibizumab for myopic choroidal neovascularization. J Ocul Pharmacol Ther. 2012;28(2):129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tufail A, Narendran N, Patel PJ, et al. Ranibizumab in myopic choroidal neovascularization: the 12-month results from the REPAIR study. Ophthalmology. 2013;120(9):1944–5.e1.

    Article  PubMed  Google Scholar 

  174. Wolf S, Balciuniene VJ, Laganovska G, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology. 2014;121(3):682–92.e2.

    Article  PubMed  Google Scholar 

  175. Tan NW, Ohno-Matsui K, Koh HJ, et al. Long-term outcomes of ranibizumab treatment of myopic choroidal neovascularization in east-Asian patients from the RADIANCE study. Retina. 2018;38(11):2228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ikuno Y, Ohno-Matsui K, Wong TY, et al. Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study. Ophthalmology. 2015;122(6):1220–7.

    Article  PubMed  Google Scholar 

  177. Hu Q, Li H, Du Y, et al. Comparison of intravitreal bevacizumab and ranibizumab used for myopic choroidal neovascularization: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019;98(12):e14905.

    Article  CAS  Google Scholar 

  178. Sayanagi K, Uematsu S, Hara C, et al. Effect of intravitreal injection of aflibercept or ranibizumab on chorioretinal atrophy in myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2019;257(4):749–57.

    Article  CAS  PubMed  Google Scholar 

  179. Chen C, Yan M, Huang Z, et al. The evaluation of a two-year outcome of intravitreal conbercept versus ranibizumab for pathological myopic choroidal neovascularization. Curr Eye Res. 2020;45(11):1415–21.

    Article  CAS  PubMed  Google Scholar 

  180. Wang JK, Huang TL, Chang PY, et al. Intravitreal aflibercept versus bevacizumab for treatment of myopic choroidal neovascularization. Sci Rep. 2018;8(1):14389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Korol A, Kustryn T, Zadorozhnyy O, et al. Comparison of efficacy of intravitreal ranibizumab and aflibercept in eyes with myopic choroidal neovascularization: 24-month follow-up. J Ocul Pharmacol Ther. 2020;36(2):122–5.

    Article  CAS  PubMed  Google Scholar 

  182. Spaide RF. The as-needed treatment strategy for choroidal neovascularization: a feedback-based treatment system. Am J Ophthalmol. 2009;148(1):1–3.

    Article  PubMed  Google Scholar 

  183. Niwa Y, Sawada O, Miyake T, et al. Comparison between one injection and three monthly injections of intravitreal bevacizumab for myopic choroidal neovascularization. Ophthalmic Res. 2012;47:135–40.

    Article  CAS  PubMed  Google Scholar 

  184. Ruiz-Moreno JM, Montero JA, Amat-Peral P. Myopic choroidal neovascularization treated by intravitreal bevacizumab: comparison of two different initial doses. Graefes Arch Clin Exp Ophthalmol. 2011;249:595–9.

    Article  CAS  PubMed  Google Scholar 

  185. Yoon JU, Byun YJ, Koh HJ. Intravitreal anti-VEGF versus photodynamic therapy with verteporfin for treatment of myopic choroidal neovascularization. Retina. 2010;30:418–24.

    Article  PubMed  Google Scholar 

  186. Kaiser PK, Boyer DS, Cruess AF, et al. Verteporfin plus ranibizumab for choroidal neovascularization in age-related macular degeneration: twelve-month results of the DENALI study. Ophthalmology. 2012;119:1001–10.

    Article  PubMed  Google Scholar 

  187. Ohno-Matsui K, Jonas JB, Spaide RF. Macular Bruch membrane holes in choroidal neovascularization-related myopic macular atrophy by swept-source optical coherence tomography. Am J Ophthalmol. 2016;162:133–139.e1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spaide, R.F. (2021). Choroidal Neovascularization. In: Spaide, R.F., Ohno-Matsui, K., Yannuzzi, L.A. (eds) Pathologic Myopia. Springer, Cham. https://doi.org/10.1007/978-3-030-74334-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74334-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74333-8

  • Online ISBN: 978-3-030-74334-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics