Skip to main content

Computer-Assisted Surgery and Intraoperative Navigation in Acute Maxillofacial Trauma Repair

  • Chapter
  • First Online:
Innovations and New Developments in Craniomaxillofacial Reconstruction
  • 578 Accesses

Abstract

In computer-assisted maxillofacial trauma repair, the algorithm >diagnosis → planning and simulation → surgical procedure → validation and quality control< has been established.

The focus of diagnosis is on 3D imaging especially on computed tomography findings. Planning and simulation involve the creation of virtual 3D models of the desired surgical outcome by the use of special planning software. The generated virtual reconstructions can be used for designing and manufacturing patient-specific implants afterwards. During the surgical procedure, planning must be transferred to the surgical site as accurately as possible. For this purpose, open reduction with the placement of anatomically preformed or patient-specific implants, in combination with the use of intraoperative navigation and/or surgical guides are employed. Validation and quality control require postprocedural 3D imaging as well. After reconstructions of the midface and the mandibular condyles, 3D imaging is recommended to be performed even before surgery is completed. Mobile 3D C-arms are particularly useful for intraoperative 3D imaging in maxillofacial trauma repair. Malpositions can thus be corrected directly and unnecessary revisions can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schramm A, Gellrich NC. Intraoperative Navigation und computerassistierte Chirurgie. In: Schwenzer N, Ehrenfeld M, editors. Zahn-Mund-Kieferheilkunde, Mund-Kiefer-Gesichtschirurgie, vol. 2011. 4th ed. Stuttgart: Thieme; 2011. p. 479–99.

    Google Scholar 

  2. Schramm A, Wilde F. Die computergestützte Gesichtsschädelrekonstruktion. HNO 2011;59:800–6.

    Google Scholar 

  3. Markiewicz MR, Bell RB. Modern concepts in computer-assisted craniomaxillofacial reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2011;19:295–301.

    Article  Google Scholar 

  4. Wilde F, Schramm A. Intraoperative imaging in orbital and midface reconstruction. Facial Plast Surg. 2014;30:545–53.

    Article  CAS  Google Scholar 

  5. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4:9–18.

    Article  Google Scholar 

  6. Manson PN, Markowitz B, Mirvis S, Dunham M, Yaremchuk M. Toward CT-based facial fracture treatment. Plast Reconstr Surg. 1990;85:202–12.

    Article  CAS  Google Scholar 

  7. Tanrikulu R, Erol B. Comparison of computed tomography with conventional radiography for midfacial fractures. Dentomaxillofac Radiol. 2001;30:141–6.

    Article  CAS  Google Scholar 

  8. Wilde F, Lorenz K, Ebner AK, Krauss O, Mascha F, Schramm A. Intraoperative imaging with a 3D-C-arm system after zygomatico-orbital complex fracture reduction. J Oral Maxillofac Surg. 2013;71:894–910.

    Article  Google Scholar 

  9. Wikner J, Riecke B, Gröbe A, Heiland M, Hanken H. Imaging of the midfacial and orbital trauma. Facial Plast Surg. 2014;30:528–36.

    Article  CAS  Google Scholar 

  10. Cornelius C-P, Gellrich N-C, Hillerup S, Kusumoto K, Schubert W. AO foundation; midface-diagnosis, AO surgery reference. 2014. http://www.aocmf.org/surgeryref.aspx. Accessed 5 Oct 2019.

  11. Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol. 2004;33:83–6.

    Article  CAS  Google Scholar 

  12. Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:106–14.

    Article  Google Scholar 

  13. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol. 2009;71:461–8.

    Article  CAS  Google Scholar 

  14. Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol. 2009;38:367–78.

    Article  CAS  Google Scholar 

  15. Chau AC, Fung K. Comparison of radiation dose for implant imaging using conventional spiral tomography, computed tomography, and cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:559–65.

    Article  Google Scholar 

  16. Geibel M-A. DVT – Indikationen und Strahlenbelastung. 2013. http://www.zwp-online.info/de/fachgebiete/digitale-zahnmedizin/digitale-bildgebung/dvt-indikationen-und-strahlenbelastung. Accessed 10 Dec 2019.

  17. Deman P, Atwal P, Duzenli C, Thakur Y, Ford NL. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging. Phys Med Biol. 2014;59:3201–22.

    Article  CAS  Google Scholar 

  18. Brisco J, Fuller K, Lee N, Andrew D. Cone beam computed tomography for imaging orbital trauma—image quality and radiation dose compared with conventional multislice computed tomography. Br J Oral Maxillofac Surg. 2014;52:76–80.

    Article  Google Scholar 

  19. Schramm A, Gellrich NC, Schmelzeisen R. Navigational surgery of the facial skeleton. Berlin: Springer; 2007.

    Google Scholar 

  20. Markiewicz MR, Bell RB. The use of 3D imaging tools in facial plastic surgery. Facial Plast Surg Clin North Am. 2011;19:655–82.

    Article  Google Scholar 

  21. Wilde F, Hilbert J, Kamer L, Hammer B, Metzger M, Schmelzeisen R, Gellrich N-C, Schramm A. The combination of automatic segmentation, preformed implants, intraoperative imaging in primary orbital wall reconstruction: description of a new method. Int J Comput Assist Radiol Surg. 2009;4(Suppl 1):134.

    Google Scholar 

  22. Schramm A, Gellrich NC, Schön R, Gutwald R, Schmelzeisen R. Navigational maxillofacial surgery using virtual models. In: Tachibana E, Furukawa T, Mukai Y, Ma H, editors. Proceedings of the international symposium modelling applications, Daegu, Korea, 2002. p. 71–6.

    Google Scholar 

  23. Hohlweg-Majert B, Schön R, Schmelzeisen R, Gellrich NC, Schramm A. Navigational maxillofacial surgery using virtual models. World J Surg. 2005;29:1530–8.

    Article  CAS  Google Scholar 

  24. Schipper J, Klenzner T, Berlis A, Maier W, Offergeld C, Schramm A, Gellrich NC. Objektivierung von Therapieergebnissen in der Schädelbasischirurgie durch virtuelle Modellanalyse. HNO. 2006;54:677–83.

    Article  CAS  Google Scholar 

  25. Metzger MC, Bittermann G, Dannenberg L, Schmelzeisen R, Gellrich NC, Hohlweg-Majert B, Scheifele C. Design and development of a virtual anatomic atlas of the human skull for automatic segmentation in computer-assisted surgery, preoperative planning, and navigation. Int J Comput Assist Radiol Surg. 2013;8:691–702.

    Article  CAS  Google Scholar 

  26. Gellrich N-C, Schramm A, Hammer B, Schmelzeisen R. The value of computer-aided planning and intraoperative navigation in orbital reconstruction. Int J Oral Maxillofac Surg. 1999;28:52–3a.

    Article  Google Scholar 

  27. Essig H, Dressel L, Rana M, Rana M, Kokemueller H, Ruecker M, Gellrich NC. Precision of posttraumatic primary orbital reconstruction using individually bent titanium mesh with and without navigation: a retrospective study. Head Face Med. 2013;9:18.

    Article  Google Scholar 

  28. Kernan BT, Wimsatt JA 3rd. Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate. J Oral Maxillofac Surg. 2000;58:349–51.

    Article  CAS  Google Scholar 

  29. Hallermann W, Olsen S, Bardyn T, Taghizadeh F, Banic A, Iizuka T. A new method for computer-aided operation planning for extensive mandibular reconstruction. Plast Reconstr Surg. 2006;117:2431–7.

    Article  CAS  Google Scholar 

  30. Schmelzeisen R, Gellrich NC, Schoen R, Gutwald R, Zizelmann C, Schramm A. Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury. 2004;35:955–62.

    Article  Google Scholar 

  31. Fuller SC, Strong EB. Computer applications in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg. 2007;15:233–7.

    Article  Google Scholar 

  32. Bell RB, Markiewicz MR. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009;67:2559–70.

    Article  Google Scholar 

  33. Beumer HW, Puscas L. Computer modeling and navigation in maxillofacial surgery. Curr Opin Otolaryngol Head Neck Surg. 2009;17:270–3.

    Article  Google Scholar 

  34. Markiewicz MR, Dierks EJ, Potter BE, Bell RB. Reliability of intraoperative navigation in restoring normal orbital dimensions. J Oral Maxillofac Surg. 2011;69:2833–40.

    Article  Google Scholar 

  35. Austin RE, Antonyshyn OM. Current applications of 3-D intraoperative navigation in craniomaxillofacial surgery: a retrospective clinical review. Ann Plast Surg. 2012;69:271–8.

    Article  CAS  Google Scholar 

  36. Yu H, Shen SG, Wang X, Zhang L, Zhang S. The indication and application of computer-assisted navigation in oral and maxillofacial surgery—Shanghai’s experience based on 104 cases. J Craniomaxillofac Surg. 2013;41:770–4.

    Article  Google Scholar 

  37. Novelli G, Tonellini G, Mazzoleni F, Bozzetti A, Sozzi D. Virtual surgery simulation in orbital wall reconstruction: integration of surgical navigation and stereolithographic models. J Craniomaxillofac Surg. 2014;42:2025–34.

    Article  Google Scholar 

  38. Gander T, Essig H, Metzler P, Lindhorst D, Dubois L, Rücker M, Schumann P. Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J Craniomaxillofac Surg. 2015;43:319–22.

    Article  Google Scholar 

  39. Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13:196–203.

    Article  Google Scholar 

  40. Bilz M, Uhlmann E. Generative manufacturing methods: selective laser melting. 2014. http://www.ipk.fraunhofer.de/fileadmin/user_upload/IPK_FHG/publikationen/themenblaetter/ps_ft_selective_laser_melting_en.pdf. Accessed 10 Oct 2019.

  41. Heiland M, Schmelzle R, Hebecker A, Schulze D. Intraoperative 3D imaging of the facial skeleton using the SIREMOBIL Iso-C3D. Dentomaxillofac Radiol. 2004;33:130–2.

    Article  CAS  Google Scholar 

  42. Heiland M, Schulze D, Blake F, Schmelzle R. Intraoperative imaging of zygomaticomaxillary complex fractures using a 3D-C-arm system. Int J Oral Maxillofac Surg. 2005;34:369–75.

    Article  CAS  Google Scholar 

  43. Klatt J, Heiland M, Blessmann M, Blake F, Schmelzle R, Pohlenz P. Clinical indication for intraoperative 3D imaging during open reduction of fractures of the neck and head of the mandibular condyle. J Craniomaxillofac Surg. 2011;39:244–8.

    Article  CAS  Google Scholar 

  44. Hanken H, Christian L, Assaf AT, Heiland M. Intraoperative Bildgebung in der Mund-, Kiefer- und Gesichtschirurgie. Intraoperative imaging of the facial skeleton. OP J. 2013;29:130–5.

    Google Scholar 

  45. Gebhard F, Riepl C, Richter P, Liebold A, Gorki H, Wirtz R, König R, Wilde F, Schramm A, Kraus M. Der Hybridopertionssaal. Zentrum intraoperativer Bildgebung. Unfallchirurg. 2012;115:107–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wilde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilde, F., Schramm, A. (2021). Computer-Assisted Surgery and Intraoperative Navigation in Acute Maxillofacial Trauma Repair. In: Acero, J. (eds) Innovations and New Developments in Craniomaxillofacial Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-030-74322-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74322-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74321-5

  • Online ISBN: 978-3-030-74322-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics