Skip to main content

Fixed- and Scanned-Beam Antenna Arrays for 5G Applications

  • Chapter
  • First Online:
Wideband, Multiband, and Smart Antenna Systems

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Aperture array antennas have emerged as popular candidates for a variety of applications, such as radar, remote sensing, navigation [1, 2], and the fifth generation (5G) Network communication [3–5] operating in the Ka-band. This millimeter-wave band for 5G communication is expected to provide a much higher data rate than heretofore, in the gigabit range, which is not possible to achieve by using current wireless services [3]. The mm-wave phased array antenna is certain to play an important role in 5G applications, thanks to its many desirable attributes such as high gain [5, 6], higher transmission rate, and shorter latency. Recently, several studies of mm-wave phased array designs for 5G applications have been carried out in [7–9]. The phased array configuration has been proposed to serve the user in crowded areas by reducing the interference and thereby realizing a high communication rate between the base station and mobile devices. In addition, it has been argued that beam switching is essential to addressing the challenges of the future 5G applications [10–12] at millimeter-waves since it offers high-power efficiency and large channel capacity with wide-angle scan coverage. The low-profile antenna array (LPAA) design presented in [13–16] provides good performance at high frequencies, but it can only scan the beam in one plane (see Fig. 6.4), by using mechanical means [13], for instance. Recently, beam switching networks using structures, such as substrate integrated waveguide [17]; Butler matrix [18]; printed-ridge gap waveguide [19]; and magneto-electric dipole antenna array fed by RGW Butler matrix [20], have been proposed by the research community. A 1D-beam scanning technique (see Fig. 6.5) has been proposed in [12], which utilizes mechanical rotation and whose performance in terms of gain, sidelobe level, etc., varies with different orientation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Tan, J. Zhang, W. Wang, J. Xu, Design of a W-band one-dimensional beam scanning slotted waveguide antenna with narrow beam and low side lobe, in 2017 Progress in Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, (2017), pp. 3625–3628

    Chapter  Google Scholar 

  2. P. Kumar, A. Kedar, A.K. Singh, Design and development of low-cost low sidelobe level slotted waveguide antenna array in X-band. IEEE Trans. Antennas Propag. 63(11), 4723–4731 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.J. Bisharat, S. Liao, Q. Xue, High gain and low cost differentially fed circularly polarized planar aperture antenna for broadband millimeter-wave applications. IEEE Trans. Antennas Propag. 64(1), 33–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Raaf et al., Vision for beyond 4G broadband radio systems, in Proc. IEEE 22nd Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), (2011), pp. 2369–2373

    Google Scholar 

  5. D. Oueslati, R. Mittra, H. Rmili, Wideband low-profile aperture antenna for 5G-applications comprising of a slotted waveguide array and an integrated corporate feed, in 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, (2019), pp. 1–5

    Google Scholar 

  6. S. Mehri, D. Oueslati, R. Mittra, H. Rmili, Gain enhancement of a substrate integrated waveguide slot array for millimeter waves, in 2019 13th European Conference on Antennas and Propagation (EUCAP), Karkow, Poland, (2019)

    Google Scholar 

  7. M. Peng, A. Zhao, High performance 5G millimeter-wave antenna array for 37–40 GHz mobile application, in 2018 International Workshop on Antenna Technology (iWAT), Nanjing, (2018), pp. 1–4

    Google Scholar 

  8. N.O. Parchin, M. Shen, G.F. Pedersen, End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications, in 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, (2016), pp. 1–4

    Google Scholar 

  9. N.O. Parchin, M. Shen, G.F. Pedersen, UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices, in 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, (2016), pp. 1–4

    Google Scholar 

  10. Z. Pi, J. Choi, R. Heath, Millimeter-wave gigabit broadband evolution toward 5G: Fixed access and backhaul. IEEE Commun. Mag. 54(4), 138–144 (2016)

    Article  Google Scholar 

  11. M. Hashemi, C.E. Koksal, N.B. Shroff, Out-of-band millimeter wave beamforming and communications to achieve low latency and high energy efficiency in 5G systems. IEEE Trans. Commun. 66(2), 875–888 (2018)

    Article  Google Scholar 

  12. M.U. Afzal, A. Lalbakhsh, K.P. Esselle, Electromagnetic-wave beam scanning antenna using near-field rotatable graded-dielectric plates. J. Appl. Phys. 124(23), 1–11 (2018)

    Article  Google Scholar 

  13. M. Faenzi, G. Minatti, D. González-Ovejero, F. Caminita, E. Martini, C.D. Giovampaola, S. Maci, Metasurface antennas: New models, applications and realizations. Sci. Rep. 9, SP.10178 (2019)

    Article  Google Scholar 

  14. G. Minatti, M. Faenzi, M. Sabbadini, S. Maci, Bandwidth of gain in metasurface antennas. IEEE Trans. Antennas Propag. 65(6), 2836–2842 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. Gonzalez Marin, A.A. Baba, D. Lopez Cuenca, J. Hesselbarth, R.M. Hashmi, K. Esselle, High-gain low-profile chip-fed resonant cavity antennas for millimeter-wave bands. IEEE Antennas Wirel. Propag. Lett. 18(11), 2394–2398 (2019)

    Article  Google Scholar 

  16. A.A. Baba, R.M. Hashmi, K.P. Esselle, Achieving a large gain-bandwidth product from a compact antenna. IEEE Trans. Antennas Propag. 65(7), 3437–3446 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Li, K.M. Luk, A multibeam end-fire magnetoelectric dipole antenna array for millimeter-wave applications. IEEE Trans. Antennas Propag. 64(7), 2894–2904 (2016)

    Article  Google Scholar 

  18. Y.J. Cheng, W. Hong, K. Wu, Millimeter-wave multibeam antenna based on eight-port hybrid. IEEE Microw. Wirel. Compon. Lett. 19(4), 212–214 (2009)

    Article  Google Scholar 

  19. M.M.M. Ali, S.I. Shams, A.R. Sebak, Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure. IEEE Access 6, 8501–8509 (2018)

    Article  Google Scholar 

  20. M.M.M. Ali, A. Sebak, 2-D scanning magnetoelectric dipole antenna array fed by RGW Butler matrix. IEEE Trans. Antennas Propag. 66(11), 6313–6321 (2018)

    Article  Google Scholar 

  21. S. Park, Y. Tsunemitsu, M. Ando, Center feed single layer slotted waveguide array. IEEE Trans. Antennas Propag. 54(5), 1474–1480 (2006)

    Article  Google Scholar 

  22. J.C. Coetzee, J. Joubert, D.A. McNamara, Off-center-frequency analysis of a complete planar slotted-waveguide array consisting of subarrays. IEEE Trans. Antennas Propag. 48(11), 1746–1755 (2000)

    Article  Google Scholar 

  23. K.J. Nicholson, W.S.T. Rowe, K. Ghorbani, Split-ring resonator loading for the slotted waveguide antenna stiffened structure. IEEE Antennas Wirel. Propag. Lett. 10, 1524–1527 (2011)

    Article  Google Scholar 

  24. Y. Tyagi, P. Mevada, S. Chakrabarty, R. Jyoti, High-efficiency broadband slotted waveguide array antenna. IET Microw. Antennas Propag. 11(10), 1401–1408 (2017)

    Article  Google Scholar 

  25. W.L. Stutzman, G.A. Thiele, Antenna Theory and Design, 3rd edn. (Wiley, Hoboken, NJ, 2012)

    Google Scholar 

  26. S. Liao, P. Wu, K.M. Shum, Q. Xue, Differentially fed planar aperture antenna with high gain and wide bandwidth for millimeter-wave application. IEEE Trans. Antennas Propag. 63(3), 966–977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.J. Cheng, W. Hong, K. Wu, Millimeter-wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization. IEEE Trans. Antennas Propag. 58(6), 1848–1855 (2010)

    Article  Google Scholar 

  28. P. Kumar, S. Dwari, S. Singh, N.K. Agrawa, Design investigation of a laminated waveguide fed multi-band DRA for military applications. J. RF-Eng. Telecommun. 72(12), 1–8 (2016)

    Google Scholar 

  29. HFSS: High Frequency Structure Simulator, V.15, Ansoft Corp

    Google Scholar 

  30. Z.N. Chen, T. Li, Wideband substrate integrated waveguide (SIW)-fed end-fire metasurface antenna array. IEEE Trans. Antennas Propag. 66, 7032–7040 (2018)

    Article  Google Scholar 

  31. B. Yang, Z. Yu, Y. Dong, J. Zhou, W. Hong, Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems. IEEE Trans. Antennas Propag. 65(12), 6721–6727 (2017)

    Article  Google Scholar 

  32. O. Dinçer, A. Ünal, K_band substrate integrated waveguide slot array antenna with high efficiency, in Presented at IEEE International Symposium on Antennas and Propagation, (2015)

    Google Scholar 

  33. D.E.N. Davies, Application of electronic sector scanning techniques to height-finding radar systems. Proc. Inst. Electr. Eng. 110(11), 1941–1948 (1963)

    Article  Google Scholar 

  34. A. Parsa, Fast moving target detection in sea clutter using non-coherent X-band radar, in 2014 IEEE Radar Conference, Cincinnati, OH, (2014), pp. 1155–1158

    Chapter  Google Scholar 

  35. N. Vahabisani, S. Khan, M. Daneshmand, Microfluidically reconfigurable rectangular waveguide filter using liquid metal posts. IEEE Microw. Wirel. Compon. Lett. 26(10), 801–803 (2016)

    Article  Google Scholar 

  36. S.N. McClung, S. Saeedi, H.H. Sigmarsson, Band-reconfigurable filter with liquid metal actuation. IEEE Trans. Microw. Theory Tech. 66(6), 3073–3080 (2018)

    Article  Google Scholar 

  37. Z. Chen, H. Wong, J. Kelly, A polarization-reconfigurable glass dielectric resonator antenna using liquid metal. IEEE Trans. Antennas Propag. 67(5), 3427–3432 (2019)

    Article  Google Scholar 

  38. K. Alqurashi, J.R. Kelly, Z. Wang, C. Crean, R. Mittra, M. Khalily, Y. Gao, Liquid metal bandwidth reconfigurable antenna. IEEE Antennas Wirel. Propag. Lett. 19(1), 218–222 (2020)

    Article  Google Scholar 

  39. S. Jain, R. Mittra, S. Pandey, Flat-base broadband multibeam Luneburg lens for wide-angle scan. J. Electromagn. Waves Appl. 29(10), 1329–1341 (2015)

    Article  Google Scholar 

  40. J. Bor, O. Lafond, H. Merlet, P. Le Bars, M. Himdi, Foam based Luneburg lens antenna at 60 GHz. Prog. Electromagn. Res. Lett. PIER 44, 1–7 (2014)

    Article  Google Scholar 

  41. B. Fuchs, L. Le Coq, O. Lafond, S. Rondineau, M. Himdi, Design optimization of multishell Luneburg lenses. IEEE Trans. Antennas Propag. 55(2), 283–289 (2007)

    Article  Google Scholar 

  42. R.K. Arya, S. Zhang, S. Pandey, A. Kumar, Y. Vardaxoglou, W. Whittow, R. Mittra, Meta-atoms and artificially engineered materials for antenna applications, Chap. 10, in Electromagnetic Waves, Developments in Antenna Analysis and Design, vol. 1, (2018), pp. 351–405

    Google Scholar 

  43. V.T. Bharambe, J.J. Adams, Planar 2D beam steering antenna using liquid metal parasitics. IEEE Trans. Antennas Propag. 68, 7320–7327 (2019)

    Article  Google Scholar 

  44. F. Ferrero, C. Luxey, G. Jacquemod, R. Staraj, Dual-band circularly polarized microstrip antenna for satellite applications. IEEE Antennas Wirel. Propag. Lett. 4, 13–15 (2005)

    Article  Google Scholar 

  45. H. Legay, L. Shafai, A new stacked microstrip antenna with large bandwidth and high gain, in IEEE AP-S Int. Symp. Digest, (1993), pp. 948–951

    Google Scholar 

  46. O. Donia, A. Ghalib, R.K. Arya, H. Rmilli, R. Mittra, Microstrip-fed scanning dipole antenna array for 5G applications, in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Atlanta, Georgia, USA, (2019)

    Google Scholar 

  47. M.S. Sharawi, Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas Propag. Mag. 55, 218–232 (2013)

    Article  Google Scholar 

  48. M.S. Sharawi, Printed MIMO Antenna Engineering (Artech House, Norwood, MA, 2014)

    Google Scholar 

  49. M. Ikram, Y. Wang, M.S. Sharawi, A. Abbosh, A novel connected PIFA array with MIMO configuration for 5G mobile applications, in Chez Australian Microwave Symposium (AMS), Brisbane, (2018)

    Google Scholar 

  50. M.S. Sharawi, M. Ikram, A. Shamim, A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals. IEEE Trans. Antennas Propag. 65(112), 6679–6686 (2017)

    Article  Google Scholar 

  51. S. Clauzier, S.M. Mikki, A. Shamim, Y.M.M. Antar, A new method for the design of slot antenna arrays: Theory and experiment, in Chez 10th European Conference on Antennas and Propagation (EuCAP), Switzerland, (2016)

    Google Scholar 

  52. A. Ghalib, Current Engineering Methods Applied to the Design of MIMO Antenna Systems (King Fahd University of Petroleum and Minerals, Saudi Arabia, 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittra, R., Oueslati, D., Nasri, A., Arya, R.K., Ghalib, A. (2021). Fixed- and Scanned-Beam Antenna Arrays for 5G Applications. In: Matin, M.A. (eds) Wideband, Multiband, and Smart Antenna Systems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-74311-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74311-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74310-9

  • Online ISBN: 978-3-030-74311-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics