Skip to main content

Robotic Cleft Palate Surgery and Simulation

  • Chapter
  • First Online:
Robotics in Plastic and Reconstructive Surgery

Abstract

Cleft palate surgery is technically challenging to perform. There is delicate tissue handling required within the confines of the infant oral cavity workspace. A surgical robot provides improved visualization, access, and precision. Therefore, cleft palate surgery is a suitable environment for robotic application. A highly realistic cleft palate simulator was developed for testing existing and newly developed robotic systems to determine feasibility and efficacy of robotic cleft palate surgery. The cleft palate simulator has been validated as a realistic simulation environment as well as an effective and valuable training tool. Pre-clinical and clinical studies have determined that robotic cleft palate surgery is feasible and offers specific advantages such as improved visualization, access, precision, and ergonomics. However, existing robotic systems require design optimization for the unique requirements of performing cleft palate surgery within the confines of the infant oral cavity workspace. A newly developed robotic instrument that couples to the da Vinci surgical system has been developed that is more readily miniaturized and provides more compact articulation within the infant oral cavity workspace compared to existing robotic instruments. As smaller and more capable robotic surgical systems become available in the future, robotic cleft palate surgery may evolve to provide a more precise repair that ultimately may lead to improved patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DOF:

Degrees-of-freedom

PSM:

Patient side manipulator

RCM:

Remote center of motion

TORS:

Trans-oral robotic surgery

References

  1. Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet. 2009;374(9703):1773–85.

    Article  PubMed  Google Scholar 

  2. Burg ML, Chai Y, Yao CA, Magee W, Figueiredo JC. Epidemiology, etiology, and treatment of isolated cleft palate. Front Physiol. 2016;6(67):1–16.

    Google Scholar 

  3. Woo AS. Evidence-based medicine: cleft palate. Plast Reconstr Surg. 2017;139(1):191e–203e.

    Article  CAS  PubMed  Google Scholar 

  4. Hopper RA, Tse R, Smartt J, Swanson J, Kinter S. Cleft palate repair and velopharyngeal dysfunction. Plast Reconstr Surg. 2014;133(6):852e–64e.

    Article  CAS  PubMed  Google Scholar 

  5. Vadodaria S, Watkin N, Thiessen F, Ponniah A. The first cleft palate simulator. Plast Reconstr Surg. 2007;120(1):259–61.

    Article  CAS  PubMed  Google Scholar 

  6. Sommerlad BC. A technique for cleft palate repair. Plastic Reconstr Surg. 2003;112(6):1542–8.

    Article  Google Scholar 

  7. Cutting CB, Rosenbaum J, Rovati L. The technique of muscle repair in the cleft soft palate. Oper Tech Plast Reconstr Surg. 1995;2(4):215–22.

    Article  Google Scholar 

  8. Sommerlad BC. Surgery of the cleft palate: repair using the operating microscope with radical muscle retropositioning–the GostA approach. B-ENT. 2006;2(Suppl 4):32–4.

    PubMed  Google Scholar 

  9. Sommerlad BC. The use of the operating microscope for cleft palate repair and pharyngoplasty. Plast Reconstr Surg. 2003;112(6):1540–1.

    Article  PubMed  Google Scholar 

  10. Witt PD, Wahlen JC, Marsh JL, Grames LM, Pilgram TK. The effect of surgeon experience on velopharyngeal functional outcome following palatoplasty: is there a learning curve? Plast Reconstr Surg. 1998;102(5):1375–84.

    Article  CAS  PubMed  Google Scholar 

  11. Rintala AE, Haapanen ML. The correlation between training and skill of the surgeon and reoperation rate for persistent cleft palate speech. Br J Oral Maxillofac Surg. 1995;33:295–8.

    Article  CAS  PubMed  Google Scholar 

  12. Khan K, Dobbs T, Swan MC, Weinstein GS, Goodacre TE. Trans-oral robotic cleft surgery (TORCS) for palate and posterior pharyngeal wall reconstruction: a feasibility study. J Plast Reconstr Aesthet Surg. 2016;69(1):97–100.

    Article  PubMed  Google Scholar 

  13. Selber JC, Sarhane KA, Ibrahim AE, Holsinger FC. Transoral robotic reconstructive surgery. Semin Plast Surg. 2014;28(1):35–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Selber JC, Alrasheed T. Robotic microsurgical training and evaluation. Semin Plast Surg. 2014;28(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Willis RE, Gomez PP, Ivatury SJ, Mitra HS, Van Sickle KR. Virtual reality simulators: valuable surgical skills trainers or video games? J Surg Educ. 2014;71(3):426–33.

    Article  PubMed  Google Scholar 

  16. Kazan R, Cyr S, Hemmerling TM, Lin SJ, Gilardino MS. The evolution of surgical simulation: The current state and future avenues for plastic surgery education. Plast Reconstr Surg. 2017;139(2):533e–43e.

    Article  CAS  PubMed  Google Scholar 

  17. da Cruz JA, Dos Reis ST, Cunha Frati RM, Duarte RJ, Nguyen H, Srougi M, et al. Does warm-up training in a virtual reality simulator improve surgical performance? A prospective randomized analysis. J Surg Educ. 2016;73(6):974–8.

    Article  PubMed  Google Scholar 

  18. Cosman P, Hemli JM, Ellis AM, Hugh TJ. Learning the surgical craft: a review of skills training options. ANZ J Surg. 2007;77(10):838–45.

    Article  PubMed  Google Scholar 

  19. Senturk S. The simplest cleft palate simulator. J Craniofac Surg. 2013;24(3):1056.

    Article  PubMed  Google Scholar 

  20. Nagy K, Mommaerts MY. Advanced s(t)imulator for cleft palate repair techniques. Cleft Palate Craniofac J. 2009;46(1):1–5.

    Article  PubMed  Google Scholar 

  21. Matthews MS. A teaching device for Furlow palatoplasty. Cleft Palate Craniofac J. 1999;36(1):64–6.

    Article  CAS  PubMed  Google Scholar 

  22. Devinck F, Riot S, Qassemyar A, Belkhou A, Wolber A, Martinot Duquennoy V, et al. Suture simulator - Cleft palate surgery. Ann Chir Plast Esthet. 2017;62(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  23. Podolsky DJ, Fisher DM, Wong Riff KW, Looi T, Drake JM, Forrest CR. Infant robotic cleft palate surgery: a feasibility assessment using a realistic cleft palate simulator. Plast Reconstr Surg. 2017;139(2):455e–65e.

    Article  CAS  PubMed  Google Scholar 

  24. Podolsky DJ, Fisher DM, Wong Riff KW, Szasz P, Looi T, Drake JM, Forrest CR. Assessing technical performance and determining the learning curve in cleft palate surgery using a high fidelity cleft palate simulator. Plast Reconstr Surg. 2018;141(6):1485–500.

    Article  CAS  PubMed  Google Scholar 

  25. Podolsky DJ, Fisher DM, Wong KW, Looi T, Drake JM, Forrest CR. Evaluation and implementation of a high-fidelity cleft palate simulator. Plast Reconstr Surg. 2017;139(1):85e–96e.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng H, Podolsky DP, Fisher DM, Wong Riff KW, Lorenz PH, Khosla RK, Drake JM, Forrest CR. Teaching palatoplasty using a high-fidelity cleft palate simulator. Plast Reconstr Surg. 2018;141(1):91e–8e.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao D, Jakimowicz JJ, Albayrak A, Buzink SN, Botden SM, Goossens RH. Face, content, and construct validity of a novel portable ergonomic simulator for basic laparoscopic skills. J Surg Educ. 2014;71(1):65–72.

    Article  PubMed  Google Scholar 

  28. Ghaderi I, Manji F, Park YS, Juul D, Ott M, Harris I, et al. Technical skills assessment toolbox: a review using the unitary framework of validity. Ann Surg. 2015;261(2):251–62.

    Article  PubMed  Google Scholar 

  29. Arezzo A, Ulmer F, Weiss O, Schurr MO, Hamad M, Buess GF. Experimental trial on solo surgery for minimally invasive therapy: comparison of different systems in a phantom model. Surg Endosc. 2000;14(10):955–9.

    Article  CAS  PubMed  Google Scholar 

  30. Niccolini M, Castelli V, Diversi C, Kang B, Mussa F, Sinibaldi E. Development and preliminary assessment of a robotic platform for neuroendoscopy based on a lightweight robot. Int J Med Robot. 2016;12(1):4–17.

    Article  PubMed  Google Scholar 

  31. Strauss G, Koulechov K, Hofer M, Dittrich E, Grunert R, Moeckel H, et al. The navigation-controlled drill in temporal bone surgery: a feasibility study. Laryngoscope. 2007;117(3):434–41.

    Article  PubMed  Google Scholar 

  32. Ghezzi TL, Corleta OC. 30 years of robotic surgery. World J Surg. 2016;40(10):2550–7.

    Article  Google Scholar 

  33. Selber JC. Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg. 2010;126(6):1978–87.

    Article  CAS  PubMed  Google Scholar 

  34. Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP(R) and ZEUS(R) to da Vinci(R). J Visc Surg. 2011;148(5 Suppl):e3–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hussain A, Malik A, Halim MU, Ali AM. The use of robotics in surgery: a review. Int J Clin Pract. 2014;68(11):1376–82.

    Article  CAS  PubMed  Google Scholar 

  36. Marcus HJ, Hughes-Hallett A, Cundy TP, Yang G, Darzi A, Nandi D. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev. 2015;38:367–71.

    Article  PubMed  Google Scholar 

  37. Li Z, Glozman D, Milutinovic D, Rosen J. Maximizing dexterous workspace and optimal port placement of a multi-arm surgical robot. IEEE International Conference on Robotics and Automation; 2011; Shanghai, China. p. 3394–9.

    Google Scholar 

  38. Sun LW, Yeung CK. Port placement and pose selection of the da Vinci surgical system for collision-free intervention based on performance optimization. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2007; San Diego, CA, USA. p. 1951–6.

    Google Scholar 

  39. Li G, Wu D, Ma R, Huang K, Du Z. Pose planning for robotically assisted minimally invasive surgery. 3rd International Conference on Biomedical Engineering and Informatics; 2010; Yantai, China. p. 1769–74.

    Google Scholar 

  40. Nadjmi N. Transoral robotic cleft palate surgery. Cleft Palate Craniofac J. 2016;53(3):326–31.

    Article  PubMed  Google Scholar 

  41. Carroll DJ, Byrd JK, Harris GF. The feasibility of pediatric TORS for lingual thyroglossal duct cyst. Int J Pediatr Otorhinolaryngol. 2016;88:109–12.

    Article  PubMed  Google Scholar 

  42. Wine TM, Duvvuri U, Maurer SH, Mehta DK. Pediatric transoral robotic surgery for oropharyngeal malignancy: a case report. Int J Pediatr Otorhinolaryngol. 2013;77(7):1222–6.

    Article  PubMed  Google Scholar 

  43. Mahida JB, Cooper JN, Herz D, Diefenbach KA, Deans KJ, Minneci PC, et al. Utilization and costs associated with robotic surgery in children. J Surg Res. 2015;199(1):169–76.

    Article  PubMed  Google Scholar 

  44. Cheon B, Gezgin E, Ji DK, Tomikawa M, Hashizume M, Kim HJ, et al. A single port laparoscopic surgery robot with high force transmission and a large workspace. Surg Endosc. 2014;28(9):2719–29.

    Article  PubMed  Google Scholar 

  45. Choi H, Kwak HS, Lim YA, Kim HJ. Surgical robot for single-incision laparoscopic surgery. IEEE Trans Biomed Eng. 2014;61(9):2458–66.

    Article  PubMed  Google Scholar 

  46. Xu K, Goldman RE, Ding J, Allen PK, Fowler DL, Simaan N. System design of an insertable robotic effector platform for single port access (SPA) surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009; St. Louis, USA. p. 5546–52.

    Google Scholar 

  47. Lee H, Choi Y, Yi B. Stackable 4-BAR manipulator for single port access surgery. IEEE/ASME Trans Mechatron. 2012;17(1):157–65.

    Article  Google Scholar 

  48. Quaglia C, Petroni G, Niccolini M, Caccavaro S, Dario P, Menciassi A. Design of a compact robotic manipulator for single-port laparoscopy. ASME J Mech Des. 2014;136(10): 105001.

    Google Scholar 

  49. Piccigallo M, Scarfogliero U, Quaglia C, Petroni G, Valdastri P, Menciassi A, Dario P. Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans Mechatron. 2010;15(6):871–8.

    Google Scholar 

  50. Abbott DJ, Becke C, Rothstein R, Peine W. Design of an Endoluminal NOTES Robotic System. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2007; San Diego, CA, USA. p. 410–16.

    Google Scholar 

  51. Rivera-Serrano CM, Johnson P, Zubiate B, Kuenzler R, Choset H, Zenati M, et al. A transoral highly flexible robot: novel technology and application. Laryngoscope. 2012;122(5):1067–71.

    Article  PubMed  Google Scholar 

  52. Jelinek F, Arkenbout EA, Henselmans PW, Pessers R, Breedveld P. Classification of joints used in steerable instruments for minimally invasive surgery-a review of the state of the art. J Med Devices. 2015;9(1)

    Google Scholar 

  53. Catherine J, Christine RL, Micaelli A. Comparative review of endoscopic devices articulations technologies developed for minimally invasive medical procedures. Appl Bionics Biomech. 2011;8:151–71.

    Article  Google Scholar 

  54. Podolsky DJ, Diller E, Fisher DM, Wong Riff KW, Looi T, Drake J, Forrest C. Utilization of cable guide channels for compact articulation within a dexterous three degrees-of-freedom surgical wrist design. J Med Devices. 2019;13(1)

    Google Scholar 

  55. Wu G, Podolsky D, Looi T, Kahrs L, Drake J, Forrest C. A 3 mm wristed instrument for the da Vinci robot: setup, characterization, and phantom tests for cleft palate repair. IEEE Trans Med Robot Bionics. 2020;2(2):130–9.

    Article  Google Scholar 

  56. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck’s Arch Surg. 2015;400(3):381–5.

    Article  Google Scholar 

  57. Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28(5):1695–702.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale J. Podolsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Podolsky, D.J., Fisher, D.M., Wong Riff, K.W., Looi, T., Drake, J.M., Forrest, C.R. (2021). Robotic Cleft Palate Surgery and Simulation. In: Selber, J.C. (eds) Robotics in Plastic and Reconstructive Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-74244-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74244-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74243-0

  • Online ISBN: 978-3-030-74244-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics