Skip to main content

The Infiltration Growth Process of Single Grain YBa2Cu3Oy Bulk Superconductor: Optimization and Effect of Liquid Phase Mass and Its Day-to-Day Life Applications

  • Chapter
  • First Online:
Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites

Abstract

In top-seeded infiltration growth process (TSIG), an efficient production of single grain YBa2Cu3O7-δ (Y-123) bulk demands single grains along with large size as it is crucial for applications of new class of super-magnets. In this process, the liquid plays a crucial role (e.g., such mixture of Y-123 and Ba3Cu5O8). Recently, 1:1 mixture of Y-123 and Ba3Cu5O8 is considered to be optimum for the production of single grain bulk Y-123 material. In this work, we utilized an innovative idea which is the implementation of low paratactic temperature YbBa2Cu3Oy (Yb-123) utilized to supply more liquid instead of Y-123. In search of an optimized liquid mixture and to attain long c-axis growth, we worked on the synthesis of bulk Y-123 material using a Yb-123 + Ba3Cu5O8 rich liquid mixture and different liquid phase (LP) sources, i.e. Yb-123+liquid (1:1; 1:1.2; and 1:1.3), as a liquid source, isothermally grown at 995 °C for 50 h and studied its superconducting performance. Then, we had adopted a slow cooling process for the production of a TSIG processed YBa2Cu3O7-δ bulk by utilizing Yb-123+ Ba3Cu5O8 (1:1 and 1:1.3) as liquid phase. Bulk single grain Y-123 with 20 mm in diameter and 7 mm thickness was grown utilizing new liquid source even shorter time, i.e. 50 h. Four lines starting from top surface of seed until to sample edges and through c-axis direction can be observed, depicting the full-fledged bulk growth. Magnetic measurements revealed superconducting transition temperature (Tc) close to 90 K and a critical current density (Jc) of around 40 kA/cm2 at 77 K in self-field without the influence of liquid phase mass. Trapped field distribution mimics a typical single cone with maximum value of 0.4 T at 77.3 K, 0.3 mm above top center of the Y-123 bulk. Note that this trapped field is more than three times the one measured for Yb-123+ Ba3Cu5O8 (1:1) as liquid source using the same size and similar material. These results clearly indicate that processing of low peritectic temperature liquid (Yb123+ Ba3Cu5O8) and its mass is crucial to obtain high quality TSIG processed Y-123 material that can be exploited for numerous industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Murakami, Supercond. Sci. Technol. 13, R1 (1992)

    Google Scholar 

  2. T. Ohara, H. Kumakura, H. Wada, Phys C 13, 1272 (2001)

    Article  Google Scholar 

  3. S. Nishijima, S.I. Takeda, F. Mishima, Y. Tabata, M. Yamamoto, J.I. Joh, H. Iseki, Y. Muragaki, A. Sasaki, K. Jun, N. Saho, IEEE Trans. Appl. Supercond. 18(2), 874 (2008)

    Article  CAS  Google Scholar 

  4. T. Nakamura, D. Tamada, Y. Yanagi, Y. Itoh, T. Nemoto, H. Utumi, K. Kose, J. Magn. Reson. 259, 68 (2015)

    Article  CAS  Google Scholar 

  5. D. Zhou, M. Izumi, M. Miki, B. Felder, T. Ida, M. Kitano, Supercond. Sci. Technol. 25, 103001 (2012)

    Article  Google Scholar 

  6. J.H. Durrell, M.D. Ainslie, D. Zhou, P. Vanderbemden, T. Bradshaw, S. Speller, M. Filipenko, D.A. Cardwell, Supercond. Sci. Technol. 31, 103501 (2018)

    Article  Google Scholar 

  7. H.T. Ren, L. Xiao, Y.L. Jiao, M.H. Zheng, Physica C 412-414, 597 (2004)

    Article  CAS  Google Scholar 

  8. M. Muralidhar, M. Tomita, K. Suzuki, M. Jirsa, Y. Fukumoto, A. Ishihara, Supercond. Sci. Technol. 23, 045033 (2010)

    Article  Google Scholar 

  9. M. Tomita, M. Murakami, Nature 421, 517 (2003)

    Article  CAS  Google Scholar 

  10. M. Muralidhar, N. Sakai, N. Chikumoto, N. Jirsa, T. Machi, N. Nishiyama, Y. Wu, M. Murakami, Phys. Rev. Lett. 89, 237001 (2002)

    Article  CAS  Google Scholar 

  11. K. Nakazato, M. Muralidhar, M.R. Koblischka, M. Murakami, Cryogenics 63, 129 (2014)

    Article  CAS  Google Scholar 

  12. M. Santosh, Acta Phys. Pol. A 126, 808 (2014)

    Article  Google Scholar 

  13. P. Diko, C. Wende, D. Litzkendorf, T. Klupsch, W. Gawalek, Supercond. Sci. Technol. 11, 49 (1998)

    Article  CAS  Google Scholar 

  14. K. Chan-Joong, K.-B. Kim, H.-W. Park, T.-H. Sung, I.-H. Kuk, G.-W. Hong, Supercond. Sci. Technol. 9, 76 (1996)

    Article  Google Scholar 

  15. N. Vilalta, F. Sandiumenge, S. Piñol, X. Obradors, J. Mater. Res. 12, 38–46 (1997)

    Article  CAS  Google Scholar 

  16. E. Sudhakar Reddy, T. Rajasekharan, Supercond. Sci. Technol. 11, 523 (1998)

    Article  Google Scholar 

  17. A. Mahmood, B.-H. Jun, Y.H. Han, C.-J. Kim, Supercond. Sci. Technol. 23, 065005 (2010)

    Article  Google Scholar 

  18. M. Sushma, M. Murakami, J. Supercond. Nov. Magn. 31, 2291 (2018)

    Article  CAS  Google Scholar 

  19. D.X. Chen, R.B. Goldfarb, J. Appl. Phys. 66, 2489 (1989)

    Article  Google Scholar 

  20. D.F. Lee, V. Selvamanickam, K. Salama, Physica C 202, 83 (1992)

    Article  CAS  Google Scholar 

  21. P. Diko, V.R. Todt, D.J. Miller, K.C. Goretta, Physica C 278, 192 (1997)

    Article  CAS  Google Scholar 

  22. A.K. Pradhan, K. Kuroda, B. Chen, N. Koshizuka, Phys. Rev. B 58, 9498 (1998)

    Article  CAS  Google Scholar 

  23. M. Werner, F.M. Sauerzopf, H.W. Weber, A. Wisniewski, Phys. Rev. B 61, 14795 (2000)

    Article  CAS  Google Scholar 

  24. F.M. Sauerzopf, H.P. Wiesinger, H.W. Weber, G.W. Crabtree, Phys. Rev. B 51, 6002 (1995)

    Article  CAS  Google Scholar 

  25. D. Dhruba, M. Muralidhar, M.S. Ramachandra Rao, M. Murakami, Supercond. Sci. Technol. 30, 105015 (2017)

    Article  Google Scholar 

  26. K.N. Pavan, M. Muralidhar, T. Kento, M. Jirsa, M. Murakami, J. Appl. Phys. 125, 093907 (2019)

    Article  Google Scholar 

  27. H. Hayashi, K. Tsutsumi, N. Saho, N. Nishizima, K. Asano, Physica C 392–396, 745 (2003)

    Article  Google Scholar 

  28. M. Santosh, M.R. Koblischka, Eur. J. Phys. Educ. 5, 1 (2014)

    Article  Google Scholar 

  29. C.A. Luongo, J. Masson, T. Nam, D. Mavris, H.D. Kim, G.V. Brown, M.W. David Hall, IEEE Trans. Appl. Supercond. 19, 1055 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miryala, S., Murakami, M. (2021). The Infiltration Growth Process of Single Grain YBa2Cu3Oy Bulk Superconductor: Optimization and Effect of Liquid Phase Mass and Its Day-to-Day Life Applications. In: Roca, A.G., et al. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites. Springer, Cham. https://doi.org/10.1007/978-3-030-74073-3_11

Download citation

Publish with us

Policies and ethics