Skip to main content
  • 448 Accesses

Abstract

Fundamentals of magnetic nanoparticles (NPs) have been explored since mid of last century; however, the importance of these tiny magnets has been accented within last 20 years due to their great application potential in biomedicine and data storage. The most studied materials are spinel oxides, among them ferrites, which are favoured thanks to their sufficient chemical stability, well-established protocols of preparation and surface modifications, and very good magnetic properties. The presence of iron in the lattice enables one to study the spinel ferrite NPs from the chemical, structural and magnetic point of view by a unique probe operating at the very local level, which is the Mössbauer spectroscopy (MS). The goal of this chapter is to give a general picture of current understanding the magnetic properties of spinel ferrite NPs based on MS and other experimental techniques. First, the apparent, but manifold term—a “core–shell” NP—is discussed from the perspective of internal chemical, structural and magnetic assemblage within a single NP seen by different experimental methods. Fundamentals of MS with focus on single-domain NPs are given, followed by a summary on the most innovative works published within last ~ 10 years discussing the core–shell phenomenon. Final remarks emphasizing possible directions of magnetic NP research are closing the chapter.

Preface

When being asked to contribute to this book, my idea was to discuss the peculiarities in understanding magnetic behaviour of nanoscale oxide magnets, in particular the relevance of the classical and quantum pictures featuring their magnetic properties. However, in November 2018, my great friend and colleague Daniel Nižňanský passed away. He attracted me to the fascinating field of nanomagnetism, and in particular, he always contributed significantly with his enormous expertize in synthesis and Mössbauer spectroscopy of fine particles of magnetic oxides. In memory of his great contribution to the magnetic nanoparticle research, I will provide current state of the art in this field from the perspective of applying Mössbauer spectroscopy techniques to magnetic spinel oxide nanoparticles. At this point, I would like to express my great thanks to my outstanding students and colleagues: Barbara Pacáková, Simona Kubíčková and Alice Mantlíková who did an excellent job and substantial advancement of the field during their doctoral studies. Finally, my great thanks belong to Puerto Morales, Alejandro Gomez Roca, Gorka Salas, Carla Cannas, Marco Sana, Valentina Mameli, Dominika Zakutna and Anton Repko for unforgettable collaboration and precious inputs on various aspects related to magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Mössbauer, Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z. Phys. 151, 124–143 (1958). https://doi.org/10.1007/BF01344210

    Article  Google Scholar 

  2. T. Glaser, in Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications, ed. by P. Gütlich, E. Bill, A. X. Trautwein, (Springer, Berlin, Heidelberg, 2011)

    Google Scholar 

  3. E. Gerdau, R. Rüffer, H. Winkler, et al., Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985). https://doi.org/10.1103/PhysRevLett.54.835

    Article  CAS  Google Scholar 

  4. G.V. Smirnov, U. van Bürck, A.I. Chumakov, et al., Synchrotron Mössbauer source. Phys. Rev. B 55, 5811–5815 (1997). https://doi.org/10.1103/PhysRevB.55.5811

    Article  CAS  Google Scholar 

  5. M. Seto, R. Masuda, S. Higashitaniguchi, et al., Synchrotron-radiation-based Mössbauer spectroscopy. Phys. Rev. Lett. 102, 217602 (2009). https://doi.org/10.1103/PhysRevLett.102.217602

    Article  CAS  Google Scholar 

  6. T. Li, X. Zhang, The prime beat components extraction method for the time spectra analysis of nuclear resonant forward scattering. Materials, 12(10), 1657 (2019). https://doi.org/10.3390/ma12101657

  7. J.B. Hastings, D.P. Siddons, U. van Bürck, et al., Mössbauer spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770–773 (1991). https://doi.org/10.1103/PhysRevLett.66.770

    Article  CAS  Google Scholar 

  8. E. Gerdau, R. Rüffer, R. Hollatz, J.P. Hannon, Quantum beats from nuclei excited by synchrotron radiation. Phys. Rev. Lett. 57, 1141–1144 (1986). https://doi.org/10.1103/PhysRevLett.57.1141

    Article  CAS  Google Scholar 

  9. R. Masuda, K. Kusada, T. Yoshida, et al., Synchrotron-radiation-based Mössbauer absorption spectroscopy with high resonant energy nuclides. Hyperfine Interact. 240, 1–6 (2019). https://doi.org/10.1007/s10751-019-1672-x

    Article  CAS  Google Scholar 

  10. M. Seto, R. Masuda, S. Higashitaniguchi, et al., Mössbauer spectroscopy in the energy domain using synchrotron radiation. J. Phys. Conf. Ser. 217, 012002 (2010). https://doi.org/10.1088/1742-6596/217/1/012002

    Article  CAS  Google Scholar 

  11. R. Masuda, Y. Kobayashi, S. Kitao, et al., 61 Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure. Sci. Rep. 6, 6–10 (2016). https://doi.org/10.1038/srep20861

    Article  CAS  Google Scholar 

  12. E. Tronc, P. Prene, J.P. Jolivet, et al., Magnetic behaviour of γ-Fe2O3 nanoparticles by mössbauer spectroscopy and magnetic measurements. Hyperfine Interact. 95, 129–148 (1995). https://doi.org/10.1007/BF02146310

    Article  CAS  Google Scholar 

  13. P.V. Hendriksen, S. Linderoth, C.A. Oxborrow, S. Morup, Ultrafine maghemite particles. II. the spin-canting effect revisited. J. Phys. Condens. Matter 6, 3091–3100 (1994). https://doi.org/10.1088/0953-8984/6/16/014

    Article  CAS  Google Scholar 

  14. S. Mørup, E. Brok, C. Frandsen, Spin structures in magnetic nanoparticles. J. Nanomater. 2013 (2013). https://doi.org/10.1155/2013/720629

  15. S. Mørup, M.F. Hansen, C. Frandsen, Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010). https://doi.org/10.3762/bjnano.1.22

    Article  CAS  Google Scholar 

  16. E. Tronc, P. Prené, J.P. Jolivet, et al., Spin canting in γ-Fe2O3 nanoparticles. Hyperfine Interact. 112, 97–100 (1998)

    Article  CAS  Google Scholar 

  17. P. Prené, E. Tronc, J.P. Jolivet, et al., Mössbauer investigation of non-aggregated γ-Fe2O3 particles. Hyperfine Interact. 93, 1409–1414 (1994). https://doi.org/10.1007/BF02072885

    Article  Google Scholar 

  18. J. Stöhr, H.C. Siegmann, From Fundamentals to Nanoscale Dynamics (Springer-Verlag, Berlin, Heidelberg, 2006)

    Google Scholar 

  19. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  20. W.F. Brown, Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963). https://doi.org/10.1103/PhysRev.130.1677

    Article  Google Scholar 

  21. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

  22. J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971). https://doi.org/10.1103/PhysRevLett.27.1140

    Article  CAS  Google Scholar 

  23. J.M.D. Coey, D. Khalafalla, Superparamagnetic γ-Fe2O3. Phys. Status Solidi 11, 229–241 (1972). https://doi.org/10.1002/pssa.2210110125

    Article  CAS  Google Scholar 

  24. A. Morrish, K. Haneda, P. Schurer, Surface magnetic structure of small γ-Fe2O3 particles. J. Phys. Colloques. 37, C6-301–C6-305 (1976). https://doi.org/10.1051/jphyscol:1976663

  25. M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, et al., Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 11, 3058–3064 (1999). https://doi.org/10.1021/cm991018f

    Article  CAS  Google Scholar 

  26. A.G. Roca, D. Niznansky, J. Poltierova-Vejpravova, et al., Magnetite nanoparticles with no surface spin canting. J. Appl. Phys. 105, 114309 (2009). https://doi.org/10.1063/1.3133228

    Article  CAS  Google Scholar 

  27. S. Kubickova, D. Niznansky, M.P. Morales Herrero, et al., Structural disorder versus spin canting in monodisperse maghemite nanocrystals. Appl. Phys. Lett. 104, 223105 (2014). https://doi.org/10.1063/1.4881331

    Article  CAS  Google Scholar 

  28. H. Kachkachi, A. Ezzir, M. Noguès, E. Tronc, Surface effects in nanoparticles: application to maghemite -Fe O. Eur. Phys. J. B. 14, 681–689 (2000). https://doi.org/10.1007/s100510051079

    Article  CAS  Google Scholar 

  29. Q.A. Pankhurst, R.J. Pollard, Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys. Rev. Lett. 67, 248–250 (1991). https://doi.org/10.1103/PhysRevLett.67.248

    Article  CAS  Google Scholar 

  30. B. Pacakova, S. Kubickova, G. Salas, et al., The internal structure of magnetic nanoparticles determines the magnetic response. Nanoscale 9, 5129 (2017). https://doi.org/10.1039/c6nr07262c

    Article  CAS  Google Scholar 

  31. S. Kamali, E. Bringas, H.-Y. Hah, et al., Magnetism and Mossbauer study of formation of multi-core gamma-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 451, 131–136 (2018). https://doi.org/10.1016/j.jmmm.2017.10.102

    Article  CAS  Google Scholar 

  32. B. Pacakova, A. Mantlikova, D. Niznansky, et al., Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy. J. Phys. Condens. Matter 28, 206004 (2016). https://doi.org/10.1088/0953-8984/28/20/206004

    Article  CAS  Google Scholar 

  33. H.S. Dehsari, V. Ksenofontov, A. Moeller, et al., Determining magnetite/maghemite composition and core-shell nanostructure from magnetization curve for iron oxide nanoparticles. J. Phys. Chem. C 122, 28292–28301 (2018). https://doi.org/10.1021/acs.jpcc.8b06927

    Article  CAS  Google Scholar 

  34. D. Fiorani, D. Peddis, Understanding dynamics of interacting magnetic nanoparticles: From the weak interaction regime to the collective superspin glass state. J. Phys. Conf. Ser. 521, 012006 (2014). https://doi.org/10.1088/1742-6596/521/1/012006

    Article  CAS  Google Scholar 

  35. G. Salas, C. Casado, F.J. Teran, et al., Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 22, 21065–21075 (2012). https://doi.org/10.1039/c2jm34402e

    Article  CAS  Google Scholar 

  36. S. Belaïd, S. Laurent, M. Vermeech, et al., A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Nanotechnology 24, 055705 (2013). https://doi.org/10.1088/0957-4484/24/5/055705

    Article  CAS  Google Scholar 

  37. M. Estrader, A. Lopez-Ortega, I.V. Golosovsky, et al., Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study. Nanoscale 7, 3002–3015 (2015). https://doi.org/10.1039/c4nr06351a

    Article  CAS  Google Scholar 

  38. V. Blanco-Gutierrez, E. Climent-Pascual, M.J. Torralvo-Fernandez, et al., Neutron diffraction study and superparamagnetic behavior of ZnFe2O4 nanoparticles obtained with different conditions. J. Solid State Chem. 184, 1608–1613 (2011). https://doi.org/10.1016/j.jssc.2011.04.034

    Article  CAS  Google Scholar 

  39. A. Kuzmin, J. Chaboy, EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 1, 571–589 (2014). https://doi.org/10.1107/S2052252514021101

    Article  CAS  Google Scholar 

  40. P. Strunz, D. Mukherji, G. Pigozzi, et al., Characterization of core-shell nanoparticles by small angle neutron scattering. Appl. Phys. A Mater. Sci. Process. 88, 277–284 (2007). https://doi.org/10.1007/s00339-007-4008-7

    Article  CAS  Google Scholar 

  41. S. Mühlbauer, D. Honecker, É.A. Périgo, et al., Magnetic small-angle neutron scattering. Rev. Mod. Phys. 91, 1–75 (2019). https://doi.org/10.1103/revmodphys.91.015004

    Article  CAS  Google Scholar 

  42. M. Bersweiler, P. Bender, L.G. Vivas, et al., Size-dependent spatial magnetization profile of manganese-zinc ferrite M n0.2 Z n0.2 F e2.6 O4 nanoparticles. Phys. Rev. B 100, 1–10 (2019). https://doi.org/10.1103/PhysRevB.100.144434

    Article  Google Scholar 

  43. M. Bonini, A. Wiedenmann, P. Baglioni, Small angle polarized neutrons (SANSPOL) investigation of surfactant free magnetic fluid of uncoated and silica-coated cobalt-ferrite nanoparticles. J. Phys. Chem. B 108, 14901–14906 (2004). https://doi.org/10.1021/jp049286a

    Article  CAS  Google Scholar 

  44. S. Brice-Profeta, M.-A. Arrio, E. Tronc, et al., Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. J. Magn. Magn. Mater. 288, 354–365 (2005). https://doi.org/10.1016/j.jmmm.2004.09.120

    Article  CAS  Google Scholar 

  45. R. Russo, E. Esposito, C. Granata, et al., Magnetic nanoparticle characterization using nano-SQUID based on niobium Dayem bridges. Phys. Procedia 36, 293–299 (2012). https://doi.org/10.1016/j.phpro.2012.06.162

    Article  CAS  Google Scholar 

  46. L. Angeloni, D. Passeri, S. Corsetti, et al., Single nanoparticles magnetization curves by controlled tip magnetization magnetic force microscopy. Nanoscale 9, 18000–18011 (2017). https://doi.org/10.1039/C7NR05742C

    Article  CAS  Google Scholar 

  47. M. Kim, C.S. Kim, H.J. Kim, et al., Effect hyperthermia in CoFe2O4@MnFe2O4 nanoparticles studied by using field-induced Mossbauer spectroscopy. J. Korean Phys. Soc. 63, 2175–2178 (2013). https://doi.org/10.3938/jkps.63.2175

    Article  CAS  Google Scholar 

  48. S. Mørup, Mössbauer effect in small particles. Hyperfine Interact. 60, 959–973 (1990). https://doi.org/10.1007/BF02399910

    Article  Google Scholar 

  49. S. Mørup, H. Topsøe, B.S. Clausen, Magnetic properties of microcrystals studied by mössbauer spectroscopy. Phys. Scr. 25, 713–719 (1982). https://doi.org/10.1088/0031-8949/25/6A/015

    Article  Google Scholar 

  50. J. Fock, M.F. Hansen, C. Frandsen, S. Mørup, On the interpretation of Mössbauer spectra of magnetic nanoparticles. J. Magn. Magn. Mater. 445, 11–21 (2018). https://doi.org/10.1016/j.jmmm.2017.08.070

    Article  CAS  Google Scholar 

  51. I.P. Suzdalev, Magnetic phase transitions in nanoclusters and nanostructures. Russ. J. Inorg. Chem. 54, 2068 (2009). https://doi.org/10.1134/S0036023609130038

    Article  Google Scholar 

  52. D.H. Jones, K.K.P. Srivastava, Many-state relaxation model for the Mössbauer spectra of superparamagnets. Phys. Rev. B 34, 7542–7548 (1986). https://doi.org/10.1103/PhysRevB.34.7542

    Article  CAS  Google Scholar 

  53. M. Blume, J.A. Tjon, Mössbauer spectra in a fluctuating environment. Phys. Rev. 165, 446–456 (1968). https://doi.org/10.1103/PhysRev.165.446

    Article  Google Scholar 

  54. U. Gonser, F. Aubertin, S. Stenger, et al., Polarization and thickness effects in Mössbauer spectroscopy. Hyperfine Interact. 67, 701–709 (1991). https://doi.org/10.1007/BF02398222

    Article  CAS  Google Scholar 

  55. B. Kalska-Szostko, M. Cydzik, D. Satula, M. Giersig, Mossbauer studies of core-shell nanoparticles. Acta Phys. Pol. A 119, 15–17 (2011). https://doi.org/10.12693/APhysPolA.119.15

    Article  CAS  Google Scholar 

  56. A. Chuev, Mössbauer spectra and magnetization curves of nanoparticles in a weak magnetic field. J. Phys. Conf. Ser. 217, 8–12 (2010). https://doi.org/10.1088/1742-6596/217/1/012011

    Article  CAS  Google Scholar 

  57. S.D. Oberdick, A. Abdelgawad, C. Moya, et al., Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles. Sci. Rep. 8, 3425 (2018). https://doi.org/10.1038/s41598-018-21626-0

    Article  CAS  Google Scholar 

  58. B. Pacakova, S. Kubickova, A. Mantlikova, et al., Spinel ferrite nanoparticles: Correlation of structure and magnetism, in Magnetic Spinels- Synthesis, Properties and Applications, (InTech, London, 2017)

    Google Scholar 

  59. S.J. Iyengar, M. Joy, C.K. Ghosh, et al., Magnetic, X-ray and Mossbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route. RSC Adv. 4, 64919–64929 (2014). https://doi.org/10.1039/c4ra11283k

    Article  CAS  Google Scholar 

  60. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, et al., Mossbauer studies of the structure of core/shell Fe3O4/-Fe2O3 nanoparticles. Tech. Phys. Lett. 45, 426–429 (2019). https://doi.org/10.1134/S1063785019050079

    Article  CAS  Google Scholar 

  61. A.S. Kamzin, A.A. Valiullin, H. Khurshid, et al., Mossbauer studies of core-shell FeO/Fe3O4 nanoparticles. Phys. Solid State 60, 382–389 (2018). https://doi.org/10.1134/S1063783418020129

    Article  CAS  Google Scholar 

  62. A. Lak, M. Kraken, F. Ludwig, et al., Size dependent structural and magnetic properties of FeO-Fe 3O4 nanoparticles. Nanoscale 5, 12286–12295 (2013). https://doi.org/10.1039/c3nr04562e

    Article  CAS  Google Scholar 

  63. E.C. Sousa, H.R. Rechenberg, J. Depeyrot, et al., In-field Mossbauer study of disordered surface spins in core/shell ferrite nanoparticles. J. Appl. Phys. 106, 93901 (2009). https://doi.org/10.1063/1.3245326

    Article  CAS  Google Scholar 

  64. S. Kubickova, J. Vejpravova, P. Holec, D. Niznansky, Correlation of crystal structure and magnetic properties of Co(1-x)NixFe2O4/SiO2 nanocomposites. J. Magn. Magn. Mater. 334, 102 (2013). https://doi.org/10.1016/j.jmmm.2013.01.005

    Article  CAS  Google Scholar 

  65. A. Repko, D. Nižňanský, J. Poltierová-Vejpravová, A study of oleic acid-based hydrothermal preparation of CoFe2O4nanoparticles. J. Nanopart. Res. 13, 5021–5031 (2011). https://doi.org/10.1007/s11051-011-0483-z

    Article  CAS  Google Scholar 

  66. J. Vejpravová, V. Sechovsky, J. Plocek, et al., Magnetism of sol-gel fabricated Co Fe2O4Si O2 nanocomposites. J. Appl. Phys. 97, 124304 (2005). https://doi.org/10.1063/1.1929849

    Article  CAS  Google Scholar 

  67. G. Concas, G. Spano, C. Cannas, et al., Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites. J. Magn. Magn. Mater. 321, 1893–1897 (2009). https://doi.org/10.1016/j.jmmm.2008.12.001

    Article  CAS  Google Scholar 

  68. M. Siddique, N.M. Butt, Effect of particle size on degree of inversion in ferrites investigated by Mössbauer spectroscopy. Phys. B Condens. Matter 405, 4211–4215 (2010). https://doi.org/10.1016/j.physb.2010.07.012

    Article  CAS  Google Scholar 

  69. J. Kurian, S.P. John, M.M. Jacob, et al., Mössbauer studies of nanocrystalline ZnFe2O4 particles prepared by spray pyrolysis method. IOP Conf. Ser. Mater. Sci. Eng. 73, 012032 (2015). https://doi.org/10.1088/1757-899X/73/1/012032

    Article  CAS  Google Scholar 

  70. N. Moumen, P. Bonville, M.P. Pileni, Control of the size of cobalt ferrite magnetic fluids: Mössbauer spectroscopy. J. Phys. Chem. 100, 14410–14416 (1996). https://doi.org/10.1021/jp953324w

    Article  CAS  Google Scholar 

  71. K.M. Batoo, D. Salah, G. Kumar, et al., Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016). https://doi.org/10.1016/j.jmmm.2016.03.058

    Article  CAS  Google Scholar 

  72. N. Lakshmi, H. Bhargava, O.P. Suwalka, et al., Magnetic properties resulting from core-shell interactions in nanosized Ni0.25 Co0.25 Zn0.5 Fe2 O4. Phys. Rev. B Condens. Matter Mater. Phys. 80, 1–6 (2009). https://doi.org/10.1103/PhysRevB.80.174425

    Article  CAS  Google Scholar 

  73. S. Burianova, J. Poltierova Vejpravova, P. Holec, et al., Surface spin effects in La-doped CoFe2O4 nanoparticles prepared by microemulsion route. J. Appl. Phys. 110, 073902 (2011). https://doi.org/10.1063/1.3642992

    Article  CAS  Google Scholar 

  74. S. Burianova, J.P. Vejpravova, P. Holec, et al., Observation of surface effects in La-doped CoFe2O 4/SiO2 nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 18, 022015 (2011)

    Article  Google Scholar 

  75. M.S. Angotzi, A. Musinu, V. Mameli, et al., Spinel ferrite core-shell nanostructures by a versatile solvothermal seed-mediated growth approach and study of their nanointerfaces. ACS Nano 11, 7889–7900 (2017). https://doi.org/10.1021/acsnano.7b02349

    Article  CAS  Google Scholar 

  76. Z. Zhao, H. Cui, W. Song, et al., A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv, 518055:2020.02.22.961268 (2020). https://doi.org/10.1101/2020.02.22.961268

Download references

Acknowledgments

This work was supported by the European Research Council (ERC-Stg-716265) and Ministry of Education, Youth and Sports of the Czech Republic under Operational Programme Research, Development and Education, project Carbon allotropes with rationalized nanointerfaces and nanolinks for environmental and biomedical applications (CARAT), number CZ.02.1.01/0.0/0.0/16_026/0008382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana K. Vejpravova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vejpravova, J.K. (2021). Recent Progress in Mössbauer Studies of Iron-Based Spinel Oxide Nanoparticles. In: Roca, A.G., et al. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites. Springer, Cham. https://doi.org/10.1007/978-3-030-74073-3_1

Download citation

Publish with us

Policies and ethics