Skip to main content

Machine Learning Techniques for Predicting Outcomes of COVID-19 for Patients with preexisting Chronic Diseases

  • Conference paper
  • First Online:
CMBEBIH 2021 (CMBEBIH 2021)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 84))

Included in the following conference series:

Abstract

COVID-19 was officially confirmed during December 2019 in the city of Wuhan, China, while the first case of the disease was recorded on 17 November 2019. The World Health Organization has declared a pandemic due to the rapid spread of this disease. It is believed, due to worldwide population aging, that middle-aged and geriatric patients who suffer from chronic diseases are more prone to respiratory failure and having a poorer outcome caused by COVID-19. This paper presents the association of certain chronic diseases such as diabetes mellitus, COPD, hypertension, asthma, and others with COVID-19. Testing was done on 400 samples who were positive for the virus, 250 samples were sick of some of the listed diseases, while 150 were healthy. Machine learning algorithms use computational methods to “learn” information directly from data without relying on a predetermined equation as a model. The algorithms adaptively improve their performance as the number of samples available for learning increases. Specific parameters for different diseases were used in the paper. Based on the results presented in the paper, we concluded that chronic diseases greatly affect the number of people infected with COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Director-General’s opening remarks at the media briefing on COVID-19, 11 March 2020. In: Who.int (2020). https://www.who.int/director-general/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 12 Dec 2020

  2. WHO Coronavirus Disease (COVID-19) Dashboard. In: Covid19.who.int (2020). https://covid19.who.int/. Accessed 12 Dec 2020

  3. Disease burden and mortality estimates. In: World Health Organization (2020). https://www.who.int/healthinfo/global_burden_disease/estimates/en/. Accessed 12 Dec 2020

  4. Yang, X., et al.: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Resp. Med. 8, 475–481 (2020). https://doi.org/10.1016/s22132600(20)30079-5

    Article  Google Scholar 

  5. Liu, K., et al.: Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. 133, 1025–1031 (2020). https://doi.org/10.1097/cm9.0000000000000744

    Article  Google Scholar 

  6. Kluge, H., et al.: Prevention and control of non-communicable diseases in the COVID-19 response. Lancet 395, 1678–1680 (2020). https://doi.org/10.1016/s0140-6736(20)31067-9

    Article  Google Scholar 

  7. Thakur, J.: Novel coronavirus pandemic may worsen existing global noncommunicable disease crisis. Int. J. Noncommun. Diseases 5, 1 (2020). https://doi.org/10.4103/jncd.jncd_2_20

    Article  Google Scholar 

  8. Dyer, O.: Covid-19: Pandemic is having “severe” impact on non-communicable disease care, WHO survey finds. BM J. m2210 (2020). https://doi.org/10.1136/bmj.m2210

  9. Catic, A., Gurbeta, L., Kurtovic-Kozaric, A., Mehmedbasic, S., Badnjevic, A.: Application of Neural Networks for classification of Patau, Edwards, Down, Turner and Klinefelter Syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. BMC Med. Genomics (2018). https://doi.org/10.1186/s12920-018-0333-2

  10. Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthc. J. 6, 94–98 (2019). https://doi.org/10.7861/futurehosp.6-2-94

    Article  Google Scholar 

  11. Xie, J., Yu, F., Huang, T., Xie, R., Liu, J., Wang, C., Liu, Y.: A survey of machine learning techniques applied to software defined networking (SDN): research issues and challenges. IEEE Commun. Surv. Tutor. 21, 393–430 (2019). https://doi.org/10.1109/comst.2018.2866942

  12. Badnjevic, A., Gurbeta, L., Cifrek, M., Pecchia, L.: Pre-classification process symptom questionnaire based on fuzzy logic for pulmonary function test cost reduction. In: IFMBE Proceedings, pp. 608–616 (2017). https://doi.org/10.1007/978-981-10-4166-2_92

  13. Randhawa, G., Soltysiak, M., El Roz, H., de Souza, C., Hill, K., Kari, L.: Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. PLoS ONE 15, e0232391 (2020). https://doi.org/10.1371/journal.pone.0232391

    Article  Google Scholar 

  14. Metsky, H., Freije, C., Kosoko-Thoroddsen, T., Sabeti, P., Myhrvold, C.: CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design (2020). https://doi.org/10.1101/2020.02.26.967026

  15. Yan, L., Zhang, H., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., Sun, C., Tang, X., Jin, L., Zhang, M., Huang, X., Xiao, Y., Cao, H., Chen, Y., Ren, T., Wang, F., Xiao, Y., Huang, S., Tan, X., Huang, N., Jiao, B., Zhang, Y., Luo, A., Mombaerts, L., Jin, J., Cao, Z., Li, S., Xu, H., Yuan, Y.: A machine learning-based model for survival prediction in patients with severe COVID-19 infection (2020). https://doi.org/10.1101/2020.02.27.20028027

  16. Ge, Y., Tian, T., Huang, S., Wan, F., Li, J., Li, S., Yang, H., Hong, L., Wu, N., Yuan, E., Cheng, L., Lei, Y., Shu, H., Feng, X., Jiang, Z., Chi, Y., Guo, X., Cui, L., Xiao, L., Li, Z., Yang, C., Miao, Z., Tang, H., Chen, L., Zeng, H., Zhao, D., Zhu, F., Shen, X., Zeng, J.: A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19 (2020). https://doi.org/10.1101/2020.03.11.986836

  17. Mannino, D., Gagnon, R., Petty, T., Lydick, E.: Obstructive lung disease and low lung function in adults in the United States. Arch. Internal Med. 160, 1683 (2020). https://doi.org/10.1001/archinte.160.11.1683

  18. Gurbeta, L., Badnjevic, A., Maksimovic, M., Omanovic-Miklicanin, E., Sejdic, E.: A telehealth system for automated diagnosis of asthma and chronical obstructive pulmonary disease. J. Am. Med. Inform. Assoc. 25, 1213–1217 (2018). 10. 1093/jamia/ocy055

    Google Scholar 

  19. Badnjevic, A., Gurbeta, L., Custovic, E.: An expert diagnostic system to automatically identify asthma and chronic obstructive pulmonary disease in clinical settings. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-30116-2

  20. Overview | Chronic obstructive pulmonary disease in over 16s: diagnosis and management | Guidance | NICE. In: Nice.org.uk (2020). https://www.nice.org.uk/guidance/NG115. Accessed 14 Dec 2020

  21. Ugrešić, N., Stepanović-Petrović, R., Savić, M.: Farmakoterapija za farmaceute, pp. 173–198 (2017)

    Google Scholar 

  22. MSD priručnik dijagnostike i terapije: Kronična opstruktivna plućna bolest. In: Msd-prirucnici.placebo.hr. (2020). https://www.msd-prirucnici.placebo.hr/msdprirucnik/pulmologija/kronicna-opstruktivna-plucna-bolest. Accessed 14 Dec 2020

  23. Sejdinović, D., Gurbeta, L., Badnjević, A., Malenica, M., Dujić, T., Čaušević, A., Bego, T., Mehmedović, L.: Classification of prediabetes and type 2 diabetes using artificial neural network. In: IFMBE Proceedings, pp. 685–689 (2017). https://doi.org/10.1007/978-981-10-4166-2_103

  24. Hussain, A., Bhowmik, B., do Vale Moreira, N.: COVID-19 and diabetes: knowledge in progress. Diabetes Res. Clin. Pract. 162, 108142 (2020). https://doi.org/10.1016/j.diabres.2020.108142

  25. Muniangi-Muhitu, H., Akalestou, E., Salem, V., et al.: Covid-19 and diabetes: a complex bidirectional relationship. Front. Endocrinol. (2020). https://doi.org/10.3389/fendo.2020.582936

  26. Guo, W., Li, M., Dong, Y., et al.: Diabetes is a risk factor for the progression and prognosis of COVID ‐19. Diabetes/Metab. Res. Rev. (2020). https://doi.org/10.1002/dmrr.3319

  27. Singh, A., Gupta, R., Ghosh, A., Misra, A.: Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabet. Metab. Syndr. Clin. Res. Rev. 14, 303–310 (2020). https://doi.org/10.1016/j.dsx.2020.04.004

    Article  Google Scholar 

  28. Sardu, C., Gargiulo, G., Esposito, G., et al.: Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19. Cardiovasc. Diabetol. (2020). https://doi.org/10.1186/s12933020-01047-y

  29. Yoon, H.: Evidence-based pharmacologic therapy of bronchial asthma. J. Korean Med. Assoc. 47, 568 (2004). https://doi.org/10.5124/jkma.2004.47.6.568

    Article  Google Scholar 

  30. Global Initiative for Asthma - Global Initiative for Asthma - GINA. In: Global Initiative for Asthma – GINA (2020). https://ginasthma.org/. Accessed 15 Dec 2020

  31. Zhang, D., Shen, X., Qi, X.: Resting heart rate and all-cause and cardiovascular mortality in the general population: a meta-analysis. Can. Med. Assoc. J. 188, E53–E63 (2015). https://doi.org/10.1503/cmaj.150535

    Article  Google Scholar 

  32. Badnjevic, A., Gurbeta, L., Cifrek, M., Marjanovic, D.: Classification of asthma using artificial neural network. In: 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2016). https://doi.org/10.1109/mipro.2016.7522173

  33. COVID-19 and Hypertension: What We Know and Don’t Know - American College of Cardiology. In: American College of Cardiology (2020). https://www.acc.org/latest-incardiology/articles/2020/07/06/08/15/covid-19-and-hypertension. Accessed 16 Dec 2020

  34. Rouette, J., Suissa, K., Azoulay, L.: Re. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Epidemiology (2020). https://doi.org/10.1097/ede.0000000000001250

  35. Flack, J., Adekola, B.: Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 30, 160–164 (2020). https://doi.org/10.1016/j.tcm.2019.05.003

    Article  Google Scholar 

  36. Bakris, G., Ali, W., Parati, G.: ACC/AHA Versus ESC/ESH on Hypertension Guidelines. J. Am. Coll. Cardiol. 73, 3018–3026 (2019). https://doi.org/10.1016/j.jacc.2019.03.507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Džejna Prasko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramenković, B., Prasko, D., Pulo, E., Rončević, I., Ramić, R., Rakovac, A. (2021). Machine Learning Techniques for Predicting Outcomes of COVID-19 for Patients with preexisting Chronic Diseases. In: Badnjevic, A., Gurbeta Pokvić, L. (eds) CMBEBIH 2021. CMBEBIH 2021. IFMBE Proceedings, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-73909-6_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73909-6_98

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73908-9

  • Online ISBN: 978-3-030-73909-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics