Skip to main content

Investigations of Degradation of Virus Spread by Physical Techniques

  • Conference paper
  • First Online:
CMBEBIH 2021 (CMBEBIH 2021)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 84))

Included in the following conference series:

  • 867 Accesses

Abstract

The COVID-19 pandemic, which emerged in 2019, spread rapidly, exposing healthcare professionals and the healthcare system in particular and the entire society in general, to face a deadly virus. Learning how the virus spread will enable the development of physical methods that can prevent both COVID19 and future pandemics. Pandemics emerges when viruses are able to survive outside the host for contamination to occur. Viruses are known to spread extensively through aerosols and droplets because such environments provide conditions in which the virus can survive for a long time. Temperature and humidity parameters of aerosols and droplets also affect the survival of viruses. This article aims to analyze aspects related to destroying environments where viruses can live using infrared sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boone, S.A., Gerba, C.P.: Significance of fomites in the spread of respiratory and enteric viral disease. Appl. Environ. Microbiol. 73(6), 1687–1696 (2007)

    Article  Google Scholar 

  2. Razzini, K., et al.: SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci. Total Environ. 742, 140540 (2020)

    Article  Google Scholar 

  3. Dowell, S.F., et al.: Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin. Infect. Dis. 39(5), 652–657 (2004)

    Article  Google Scholar 

  4. Fisman, D.N.: Seasonality of infectious diseases. In: Annual Review of Public Health (2007)

    Google Scholar 

  5. Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. (2006)

    Google Scholar 

  6. Lowen, A.C., Mubareka, S., Steel, J., Palese, P.: Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. (2007)

    Google Scholar 

  7. Chan, K.H., Peiris, J.S.M., Lam, S.Y., Poon, L.L.M., Yuen, K.Y., Seto, W.H.: The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv. Virol. (2011)

    Google Scholar 

  8. Casanova, L.M., Jeon, S., Rutala, W.A., Weber, D.J., Sobsey, M.D.: Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl. Environ. Microbiol. (2010)

    Google Scholar 

  9. Ma, Y., et al.: Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. (2020)

    Google Scholar 

  10. Dowell, S.F., Shang Ho, M.: Seasonality of infectious diseases and severe acute respiratory syndrome - What we don’t know can hurt us. Lancet Infectious Diseases (2004)

    Google Scholar 

  11. Abad, F.X., Pinto, R.M., Bosch, A.: Survival of enteric viruses on environmental fomites. Appl. Environ. Microbiol. 60(10), 3704–3710 (1994)

    Article  Google Scholar 

  12. Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., Weber, D.J.: Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J. Hospital Infect. (2016)

    Google Scholar 

  13. Ge, Z., Yang, L., Xia, J., Fu, X., Zhang, Y.: Possible aerosol transmission of COVID-19 and special precautions in dentistry. J. Zhejiang Univ. Sci. B (2020)

    Google Scholar 

  14. World Health Organization: Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Geneva World Heal. Organ. (2020)

    Google Scholar 

  15. Cai, J., Sun, W., Huang, J., Gamber, M., Wu, J., He, G.: Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg. Infect. Dis. (2020)

    Google Scholar 

  16. Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., Siddique, R.: COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. (2020)

    Google Scholar 

  17. Morawska, L., Cao, J.: Airborne transmission of SARS-CoV-2: the world should face the reality. In: Environment International (2020)

    Google Scholar 

  18. Kramer, A., Schwebke, I., Kampf, G.: How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 1–8 (2006)

    Article  Google Scholar 

  19. Davis, R.E., Dougherty, E., McArthur, C., Huang, Q.S., Baker, M.G.: Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand. Influenza Other Respi. Viruses (2016)

    Google Scholar 

  20. van Doremalen, N., et al.: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. (2020)

    Google Scholar 

  21. Tellier, R.: Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 12(11), 1657–1662 (2006)

    Article  Google Scholar 

  22. Benvenuto, D., Giovanetti, M., Ciccozzi, A., Spoto, S., Angeletti, S., Ciccozzi, M.: The 2019-new coronavirus epidemic: Evidence for virus evolution. J. Med. Virol. (2020)

    Google Scholar 

  23. Sanjuán, R., Domingo-Calap, P.: Mechanisms of viral mutation. Cell. Mol. Life Sci. 73(23), 4433–4448 (2016). https://doi.org/10.1007/s00018-016-2299-6

    Article  Google Scholar 

  24. Clavel, F., Hance, A.J.: HIV drug resistance. N. Engl. J. Med. (2004)

    Google Scholar 

  25. Darnell, M.E.R., Subbarao, K., Feinstone, S.M., Taylor, D.R.: Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods (2004)

    Google Scholar 

  26. Abhimanyu, Coussens, A.K.: The role of UV radiation and Vitamin D in the seasonality and outcomes of infectious disease. Photochem. Photobiol. Sci. (2017)

    Google Scholar 

  27. Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T., Fujimoto, S.: Rapid inactivation of SARS-CoV-2 with Deep-UV LED irradiation. Emerg. Microbes Infect. (2020)

    Google Scholar 

  28. Houser, K.W.: Ten Facts about UV radiation and COVID-19. LEUKOS J. Illuminat. Eng. Soc. North Am. (2020)

    Google Scholar 

  29. Behar-Cohen, F., et al.: Ultraviolet damage to the eye revisited: Eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear. Clin. Ophthalmol. (2014)

    Google Scholar 

  30. Kim, Y., He, Y.Y.: Ultraviolet radiation-induced non-melanoma skin cancer: regulation of DNA damage repair and inflammation. Genes Diseases (2014)

    Google Scholar 

  31. Šebetic, K., Masnec, I.S., Èavka, V., Biljan, D., Krolo, I.: UV damage of the Hair. Coll. Antropol. (2008)

    Google Scholar 

  32. Levy, S.B.: UV filters. In: Handbook of Cosmetic Science and Technology, 3rd edn. (2009)

    Google Scholar 

  33. Ravanat, J.L., Douki, T.: UV and ionizing radiations induced DNA damage, differences and similarities. Radiat. Phys. Chem. (2016)

    Google Scholar 

  34. Duthie, M.S., Kimber, I., Norval, M.: The effects of ultraviolet radiation on the human immune system. Br. J. Dermatol. (1999)

    Google Scholar 

  35. Kastberger, G., Stachl, R.: Infrared imaging technology and biological applications. In: Behavior Research Methods, Instruments, and Computers (2003)

    Google Scholar 

  36. Z. Pan, G. Atungulu, and X. Li, “Infrared heating,” Resour. Eng. Technol. Sustain. World, 2013.

    Google Scholar 

  37. Vaidyanathan, J.S., Krishnamurthy, K.: Infrared Heating for Decontamination. In: Innovative Food Processing Technologies (2020)

    Google Scholar 

  38. Tanaka, F., Verboven, P., Scheerlinck, N., Morita, K., Iwasaki, K., Nicolaï, B.: Investigation of far infrared radiation heating as an alternative technique for surface decontamination of strawberry. J. Food Eng. (2007)

    Google Scholar 

  39. Ramaswamy, R., Krishnamurthy, K., Jun, S.: Microbial decontamination of food by infrared (IR) heating. In: Microbial Decontamination in the Food Industry: Novel Methods and Applications (2012)

    Google Scholar 

  40. Staack, N., Ahrné, L., Borch, E., Knorr, D.: Effect of infrared heating on quality and microbial decontamination in paprika powder. J. Food Eng. (2008)

    Google Scholar 

  41. Kaczmarek, M., Nowakowski, A.: Active IR-thermal imaging in medicine. J. Nondestr. Eval. 35(1), 1–16 (2016). https://doi.org/10.1007/s10921-016-0335-y

    Article  Google Scholar 

  42. Demirci, A., Ngadi, M.O.: Microbial decontamination in the food industry: Novel methods and applications (2012)

    Google Scholar 

  43. Wilson, S.A., Okeyo, A.A., Olatunde, G.A., Atungulu, G.G.: Radiant heat treatments for corn drying and decontamination. J. Food Process. Preserv. 2017

    Google Scholar 

  44. Bunaciu, A.A., Fleschin, S., Aboul-Enein, H.Y.: Cancer diagnosis by ft-Ir Spectrophotometry. Rev. Roum. Chim. (2015)

    Google Scholar 

  45. Buijs, H.: Infrared spectroscopy. In: Springer Handbooks (2006)

    Google Scholar 

  46. Sankaran, S., Ehsani, R.: Introduction to the electromagnetic spectrum. In: Imaging with Electromagnetic Spectrum: Applications in Food and Agriculture (2014)

    Google Scholar 

  47. Howell, J.R., Mengüç, M.P., Siegel, R.: Thermal radiation heat transfer, 6th edn. (2015)

    Google Scholar 

  48. Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. (2012)

    Google Scholar 

  49. Lin, L., Marr, L.C.: Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environ. Sci. Technol. 54(2), 1024–1032 (2020)

    Article  Google Scholar 

  50. Sabino, C.P., et al.: Light-based technologies for management of COVID-19 pandemic crisis. J. Photochem. Photobiol. B Biol. 212 (2020)

    Google Scholar 

  51. Verreault, D., Moineau, S., Duchaine, C.: Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 72, 413–444 (2008). https://doi.org/10.1128/MMBR.00002-08

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Karaböce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaböce, B., Baş, A., Böyük, A.A., Bülün, M.N., Ak, K. (2021). Investigations of Degradation of Virus Spread by Physical Techniques. In: Badnjevic, A., Gurbeta Pokvić, L. (eds) CMBEBIH 2021. CMBEBIH 2021. IFMBE Proceedings, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-73909-6_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73909-6_96

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73908-9

  • Online ISBN: 978-3-030-73909-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics