Skip to main content

Electron–Ion, Ion–Ion, and Neutral–Neutral Recombination Processes

  • Chapter
Springer Handbook of Atomic, Molecular, and Optical Physics

Part of the book series: Springer Handbooks ((SHB))

  • 3398 Accesses

Abstract

This chapter collects together the formulae, expressions, and specific equations that cover various aspects, approximations, and approaches to electron–ion, ion–ion and neutral–neutral recombination processes. The primary focus is on recombination processes in the gas phase, both at thermal energies and in ultracold regimes.

Recombination processes are ubiquitous in nature. These reactions occur in a wide variety of applications and are an important formation or loss mechanism of atoms and molecules. To illustrate the types of problems where recombination is important, we enumerate six broad areas in which recombination processes occur: (a) collisional-radiative recombination processes, involving hydrogen and helium, which are important in understanding the cosmic microwave background in cosmology 1 ; 2 ; 3 ; (b) radio recombination lines involving electrons and ions, which are central to understanding the observed spectra from interstellar clouds and planetary nebulae 4 ; 5 ; (c) recombination processes, involving electrons and holes are important in semiconductors 6 ; 7 ; (d) electron–ion and ion–ion recombination processes, which are important in understanding the properties of plasmas, whether they are in the upper atmosphere, the solar corona, or industrial reactors on earth 8 ; 9 ; 10 ; (e) atom–molecule recombination involving oxygen, which are important mechanism for forming ozone 11 ; and, finally, (f) three-body recombination processes, involving neutral bosons, which are an important loss mechanism in ultracold Rydberg atom collisions, leading to the depletion of the Bose Einstein condensate (BEC) 12 ; 13 ; 14 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fendt, A.: Astrophys. J. Supp. Ser. 181, 627 (2009)

    ADS  Google Scholar 

  2. Bernstein, J.: Kinetic theory in the expanding universe. Cambridge Univ. Press, Cambridge (1988). Chap. 8

    MATH  Google Scholar 

  3. Forrey, R.C.: Phys. Rev. A 88, 052709 (2013)

    ADS  Google Scholar 

  4. Gordon, M.A., Sorochenko, R.L.: Radio Recombination Lines. 25 Years of Investigation. Kluwer, New York (1990)

    Google Scholar 

  5. Gordon, M.A., Sorochenko, R.L.: Radio Recombination Lines: Their Physics and Astronomical Applications. Kluwer, New York (2002)

    Google Scholar 

  6. Landsberg, P.T.: Recombination in Semiconductors. Cambridge Univ. Press, Cambridge (1991)

    Google Scholar 

  7. Lakhwani, G., Rao, A., Friend, R.H.: Ann. Rev. Phys. Chem. 65, 557–581 (2014)

    ADS  Google Scholar 

  8. Del Zanna, G., Mason, H.E.: Liv. Rev. Solar Phys. 15, 1–278 (2018)

    ADS  Google Scholar 

  9. Badnell, N.R., Del Zanna, G., Fernández-Menchero, L., Giunta, A.S., Liang, G.Y., Mason, H.E., Storey, P.J.: J. Phys. B. At. Mol. Opt. Phys. 49, 094001 (2016)

    ADS  Google Scholar 

  10. Adamovich, et al.: J. Phys. D 50, 323001 (2017)

    Google Scholar 

  11. Schinke, R., Grebenshchikov, S.Y., Ivanov, M.V., Fleurat-Lessard, P.: Ann. Rev. Phys. Chem. 57, 625–661 (2006)

    ADS  Google Scholar 

  12. Burt, E.A., Ghrist, R.W., Myatt, C.J., Holland, M.J., Cornell, E.A., Wieman, C.E.: Phys. Rev. Lett. 79, 337 (1997)

    ADS  Google Scholar 

  13. Nielsen, E., Macek, J.H.: Phys. Rev. Lett. 83, 1566 (1999)

    ADS  Google Scholar 

  14. Ticknor, C., Rittenhouse, S.T.: Phys. Rev. Lett. 105, 013201 (2010)

    ADS  Google Scholar 

  15. Truhlar, D.G., Wyatt, R.E.: Ann. Rev. Phys. Chem. 27(1), 1–43 (1976)

    ADS  Google Scholar 

  16. Baer, M.: Theory of Chemical Reaction Dynamics vol. 1-4. CRC Press, Boca Raton, FL (1985)

    Google Scholar 

  17. Levine, R.D., Bernstein, R.B.: Molecular Reaction Dynamics and Chemical Reactivity. Oxford, New York (1987)

    Google Scholar 

  18. Butler, L.J.: Ann. Rev. Phys. Chem. 49, 125–171 (1998)

    ADS  Google Scholar 

  19. Greene, S.M., Shan, X., Clary, D.C.: Adv. Chem. Phys. 163, 117–149 (2018)

    Google Scholar 

  20. Greene, C.H., Giannakeas, P., Perez-Rios, J.: Rev. Mod. Phys. 89, 035006 (2017)

    ADS  Google Scholar 

  21. Marcassa, L.G., Shaffer, J.P.: Adv. At. Mol. Opt. Phys. 63, 47–133 (2014)

    ADS  Google Scholar 

  22. Scholes, G.D.: Ann. Rev. Phys. Chem. 54, 57–87 (2003)

    ADS  Google Scholar 

  23. Flannery, M.R., Vrinceanu, D.: In: Oks, E., Pindzola, M.S. (eds.) Atomic Processes in Plasmas, pp. 317–333. American Institute of Physics, New York (1998)

    Google Scholar 

  24. Petrov, D.S., Werner, F.: Phys. Rev. A 92, 022704 (2015)

    ADS  Google Scholar 

  25. Naidon, P., Endo, S.: Rep. Prog. Phys. 80, 056001 (2017)

    ADS  Google Scholar 

  26. Braaten, E., Hammer, H.-W.: Phys. Rep. 428, 259–390 (2006)

    ADS  MathSciNet  Google Scholar 

  27. Mehta, N.P., Rittenhouse, S.T., D'Incao, J.P., von Stecher, J., Greene, C.H.: Phys. Rev. Lett. 103, 153201 (2009)

    ADS  Google Scholar 

  28. Ferlaino, F., Knoop, S., Berninger, M., Harm, W., D'Incao, J.P., Nägerl, H.-C., Grimm, R.: Phys. Rev. Lett. 102, 140401 (2009)

    ADS  Google Scholar 

  29. Ralchenko, Y.: Modern Methods in Collisional-Radiative Modeling of Plasmas. Springer, New York (2016)

    Google Scholar 

  30. Stevefelt, J., Boulmer, J., Delpech, J.-F.: Phys. Rev. A 12, 1246 (1975)

    ADS  Google Scholar 

  31. Deloche, R., Monchicourt, P., Cheret, M., Lambert, F.: Phys. Rev. A 13, 1140 (1976)

    ADS  Google Scholar 

  32. Mansbach, P., Keck, J.: Phys. Rev. 181, 275 (1965)

    ADS  Google Scholar 

  33. Pitaevskii, L.P.: Sov. Phys. JETP 15, 919 (1962)

    Google Scholar 

  34. Kramers, H.A.: Philos. Mag. 46, 836 (1923)

    Google Scholar 

  35. Braaten, E., Kusunoki, M., Zhang, D.: Ann. Phys. 323, 1770–1815 (2008)

    ADS  Google Scholar 

  36. Salomon, C., Shlyapnikov, G.V., Cugliandolo, L.F.: Many-Body Physics with Ultracold Gases. Oxford Univ. Press, Oxford (2013). Chap. 3

    Google Scholar 

  37. Bedaque, P.F., Braaten, E., Hammer, H.-W.: Phys. Rev. Lett. 85, 908 (2000)

    ADS  Google Scholar 

  38. Braaten, E., Hammer, H.-W.: Phys. Rev. A 67, 042706 (2003)

    ADS  Google Scholar 

  39. Efimov, V.: Phys. Lett. 33B, 563 (1970)

    ADS  Google Scholar 

  40. Efimov, V.: Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  41. Braaten, E., Hammer, H.-W.: Ann. Phys. 322, 120–163 (2007)

    ADS  Google Scholar 

  42. Avery, J.: Hyperspherical Harmonics: Applications in Quantum Theory. Kluwer, Norwell (1989)

    MATH  Google Scholar 

  43. Bhardwaj, S., Son, S.-K., Hong, K.-H., Lai, C.-J., Kärtner, F., Santra, R.: Phys. Rev. A 88, 053405 (2013)

    ADS  Google Scholar 

  44. Bates, D.R.: Phys. Rev. 78, 492 (1950)

    ADS  Google Scholar 

  45. Bardsley, J.N.: J. Phys. A Proc. Phys. Soc. 1, 365 (1968)

    ADS  Google Scholar 

  46. Flannery, M.R.: In: Schultz, D.R., Strayer, M.R., Macek, J.H. (eds.) Atomic Collisions: A Symposium in Honor of Christopher Bottcher, pp. 53–75. American Institute of Physics, New York (1995)

    Google Scholar 

  47. Giusti, A.: J. Phys. B 13, 3867 (1980)

    ADS  Google Scholar 

  48. van der Donk, P., Yousif, F.B., Mitchell, J.B.A., Hickman, A.P.: Phys. Rev. Lett. 68, 2252 (1992)

    ADS  Google Scholar 

  49. Guberman, S.L.: Phys. Rev. A 49, R4277 (1994)

    ADS  Google Scholar 

  50. Flannery, M.R.: Int. J. Mass. Spectrom. Ion. Process. 149/150, 597 (1995)

    ADS  Google Scholar 

  51. Tashiro, M., Kato, S.: In: Guberman, S.L. (ed.) Dissociative Recombination of Molecular Ions with Electrons, pp. 243–248. Kluwer, Norwell (2003)

    Google Scholar 

  52. Florescu-Mitchell, A.I., Mitchell, J.B.A.: Phys. Rep. 430, 277–374 (2006)

    ADS  Google Scholar 

  53. Johnsen, R., Guberman, S.L.: Adv. At. Mol. Opt. Phys. 59, 76–128 (2010)

    ADS  Google Scholar 

  54. Flannery, M.R.: J. Chem. Phys. 95, 8205 (1991)

    ADS  Google Scholar 

  55. Burgess, A.: Mon. Not. R. Astron. Soc. 118, 477 (1958)

    ADS  Google Scholar 

  56. Gaunt, J.A.: Philos. Trans. R. Soc. A 229, 163 (1930)

    ADS  Google Scholar 

  57. Seaton, M.J.: Mon. Not. R. Astron. Soc. 119, 81 (1959)

    ADS  Google Scholar 

  58. Rozsnyai, B.F., Jacobs, V.L.: Astrophys. J. 327, 485 (1988)

    ADS  Google Scholar 

  59. Flower, D.R., Seaton, M.J.: Comp. Phys. Commun. 1, 31 (1969)

    ADS  Google Scholar 

  60. Martin, P.G.: Astrophys. J. Supp. Ser. 66, 125 (1988)

    ADS  Google Scholar 

  61. Fontes, C.J., Zhang, H.L., Abdallah Jr, J., Clark, R.E.H., Kilcrease, D.P., Colgan, J., Cunningham, R.T., Hakel, P., Magee, N.H., Sherrill, M.E.: J. Phys. B. At. Mol. Opt. Phys. 48, 144014 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund J. Mansky II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mansky II, E.J., Flannery, M.R. (2023). Electron–Ion, Ion–Ion, and Neutral–Neutral Recombination Processes. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_58

Download citation

Publish with us

Policies and ethics