Skip to main content

Anoikis and the Human Gut Epithelium in Health and Disease

  • Chapter
  • First Online:
Anoikis

Abstract

Anoikis performs essential roles during organogenesis, as well as in the maintenance and repair of tissues. In this respect, the continuous renewal of the human gut epithelium is characterized by the exfoliation-by-anoikis of obsolete differentiated cells. Some progress has been made with regards to the functions of integrin- and E-cadherin-mediated signaling in the regulation of anoikis in human intestinal/colon epithelial cells (hIECs); however, much remains to be explored and understood. In the same vein, the extracellulare matrix (ECM)-, integrin- and E-cadherin-mediated mechanisms which underlie the emergence of anoikis resistance and its roles in the progression of colorectal cancer (CRC) remain largely to be elucidated, whereas tantilizing evidence has been rising with regards to anoikis being also implicated in inflammatory bowel disease (IBD). This chapter will review the main findings concerning the regulation of anoikis in hIECs, as well as those pertaining to anoikis deregulation in CRC and IBD—with a partiality geared towards integrins, E-cadherins and the signaling they enact to this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  CAS  PubMed  Google Scholar 

  2. Eroglu M, Derry WB (2016) Your neighbours matter—non-autonomous control of apoptosis in development and disease. Cell Death Differ 23:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galluzzi L, Bravo-San Pedro JM, Vitale I et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  5. Penaloza C, Orlanski S, Ye Y et al (2008) Cell death in mammalian development. Curr Pharm Des 14:184–196

    Article  CAS  PubMed  Google Scholar 

  6. Tait SW, Ichim G, Green DR (2014) Die another way–non-apoptotic mechanisms of cell death. J Cell Sci 127:2135–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berghe TV, Linkermann A, Jouan-Lanhouet S et al (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  Google Scholar 

  8. Eisenberg-Lerner A, Bialik S, Simon HU et al (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    Article  CAS  PubMed  Google Scholar 

  9. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  CAS  Google Scholar 

  11. Bertrand K (2011) Survival of exfoliated epithelial cells: a delicate balance between anoikis and apoptosis. J Biomed Biotechnol 2011:534139

    PubMed  PubMed Central  Google Scholar 

  12. Srivastava R (ed) (2007) Apoptosis, cell signaling and human diseases (Molecular mechanisms, vol 1). Humana Press, Totowa

    Google Scholar 

  13. Srivastava R (ed) (2007) Apoptosis, cell signaling and human diseases (Molecular mechanisms, vol 2). Humana Press, Totowa

    Google Scholar 

  14. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    Article  CAS  PubMed  Google Scholar 

  15. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  PubMed  Google Scholar 

  16. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  CAS  PubMed  Google Scholar 

  17. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410

    Article  CAS  PubMed  Google Scholar 

  18. Hynes RO (2002) Integrins: bidirectional, allosteric signalling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  19. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140

    Article  CAS  PubMed  Google Scholar 

  21. Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9:701–706

    Article  CAS  PubMed  Google Scholar 

  22. Meredith JE, Schwartz MA (1997) Integrins, adhesion and apoptosis. Trends Cell Biol 7:146–150

    Article  CAS  PubMed  Google Scholar 

  23. Grossmann J (2002) Molecular mechanisms of “detachment-induced apoptosis—anoikis”. Apoptosis 7:247–260

    Article  CAS  PubMed  Google Scholar 

  24. Danen EH, Sonnenberg A (2003) Integrins in regulation of tissue development and function. J Pathol 201:632–641

    Article  CAS  PubMed  Google Scholar 

  25. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signalling and cell survival. J Cell Sci 115:3729–3738

    Article  CAS  PubMed  Google Scholar 

  26. Vachon PH (2011) Integrin signalling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct 2011:738137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Manninen A (2015) Epithelial polarity—generating and integrating signals from the ECM with integrins. Exp Cell Res 334:337–349

    Article  CAS  PubMed  Google Scholar 

  28. Changede R, Sheetz M (2017) Integrin and cadherin clusters: a robust way to organize adhesions for cell mechanics. BioEssays 39:1–12

    Article  CAS  PubMed  Google Scholar 

  29. Pandolfi F, Franza L, Altamura S et al (2017) Integrins: integrating the biology and therapy of cell-cell interactions. Clin Ther 39:2420–2436

    Article  CAS  PubMed  Google Scholar 

  30. Seetharaman S, Etienne-Manneville S (2018) Integrin diversity brings specificity in mechanotransduction. Biol Cell 110:49–64

    Article  CAS  PubMed  Google Scholar 

  31. Askari JA, Buckley PA, Mould AP, Humphries MJ (2009) Linking integrin conformation to function. J Cell Sci 122:165–170

    Article  CAS  PubMed  Google Scholar 

  32. Humphries JD, Chastney MR, Askari JA, Humphries MJ (2018) Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 56:14–21

    Article  PubMed  CAS  Google Scholar 

  33. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298

    Article  PubMed  CAS  Google Scholar 

  34. Walko G, Castañón MJ, Wiche G (2015) Molecular architecture and function of the hemidesmosome. Cell Tissue Res 360:529–544

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beaulieu JF, Vachon PH (2018) Commentary 1: Integrins in colorectal cancer progression. In: Top 25 Commentaries on Gastroenterology. Avid Science (eBook in press; http://www.avidscience.com/book/top-25-commentaries-on-gastroenterology/)

  36. Beaulieu JF (2018) Integrin α6 variants and colorectal cancer. Gut 67:1747–1748

    Article  CAS  PubMed  Google Scholar 

  37. Lussier C, Basora N, Bouatrouss Y, Beaulieu JF (2000) Integrins as mediators of epithelial cell-matrix interactions in the human small intestinal mucosa. Microsc Res Tech 51:169–178

    Article  CAS  PubMed  Google Scholar 

  38. Marastoni S, Ligresti G, Lorenzon E et al (2008) Extracellular matrix: a matter of life and death. Connect Tissue Res 49:203–206

    Article  CAS  PubMed  Google Scholar 

  39. Benoit YD, Groulx JF, Gagné D, Beaulieu JF (2012) RGD-dependent epithelial cell-matrix interactions in the human intestinal crypt. J Signal Transduct 2012:248759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. de Melker AA, Sonnenberg A (1999) Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signalling events. BioEssays 21:499–509

    Article  PubMed  Google Scholar 

  41. Armulik A (2002) Splice variants of human β1 integrins: origin, biosynthesis and functions. Front Biosci 7:d219–d227

    CAS  PubMed  Google Scholar 

  42. Gahmberg CG, Fagerholm SC, Nurmi SM et al (2009) Regulation of integrin activity and signalling. Biochim Biophys Acta 1790:431–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beauséjour M, Boutin A, Vachon PH (2019) Anoikis regulation—complexities, distinctions, and cell differentiation. In: Radosevich J (ed) Apoptosis and beyond: the many ways to cell death, vol 1. Wiley & Son, Somerset, pp 145–182

    Google Scholar 

  44. Martin KH, Slack JK, Boerner SA et al (2002) Integrin connections map: to infinity and beyond. Science 296:1652–1653

    Article  CAS  PubMed  Google Scholar 

  45. Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122:159–163

    Article  CAS  PubMed  Google Scholar 

  46. Ross TD, Coon BG, Yun S et al (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morse EM, Brahme NN, Calderwood DA (2014) Integrin cytoplasmic tail interactions. Biochemistry 53:810–820

    Article  CAS  PubMed  Google Scholar 

  48. Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288

    Article  CAS  PubMed  Google Scholar 

  49. Michael M, Parsons M (2020) New perspectives on integrin-dependent adhesions. Curr Opin Cell Biol 63:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–146

    Article  CAS  PubMed  Google Scholar 

  51. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514

    Article  CAS  PubMed  Google Scholar 

  52. Yap AS, Gomez GA, Parton RG (2015) Adherens junctions revisualized: organizing cadherins as nanoassemblies. Dev Cell 35:12–20

    Article  CAS  PubMed  Google Scholar 

  53. Bhatt T, Rizvi A, Batta SP et al (2013) Signaling and mechanical roles of E-cadherin. Cell Commun Adhes 20:189–199

    Article  CAS  PubMed  Google Scholar 

  54. Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315

    Article  CAS  PubMed  Google Scholar 

  55. Lecuit T, Yap AS (2015) E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 17:533–539

    Article  CAS  PubMed  Google Scholar 

  56. McCrea PD, Maher MT, Gottardi CJ (2015) Nuclear signaling from cadherin adhesion complexes. Curr Top Dev Biol 112:129–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126:393–401

    Article  CAS  PubMed  Google Scholar 

  58. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  CAS  PubMed  Google Scholar 

  59. Murray P, Edgar D (2000) Regulation of programmed cell death by basement membranes in embryonic development. J Cell Biol 150:1215–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  CAS  PubMed  Google Scholar 

  61. Gilmore AP (2005) Anoikis. Cell Death Differ 12:1473–1477

    Article  CAS  PubMed  Google Scholar 

  62. Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76:1352–1364

    Article  CAS  PubMed  Google Scholar 

  63. Ma Z, Liu Z, Myers DP et al (2008) Mechanotransduction and anoikis: death and the homeless cell. Cell Cycle 7:2462–2465

    Article  CAS  PubMed  Google Scholar 

  64. Gilmore AP, Owens TW, Foster FM, Lindsay J (2009) How adhesion signals reach a mitochondrial conclusion—ECM regulation of apoptosis. Curr Opin Cell Biol 21:654–661

    Article  CAS  PubMed  Google Scholar 

  65. Horbinski C, Mojesky C, Kyprianou N (2010) Live free or die: tales of homeless (cells) in cancer. Am J Pathol 177:1044–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taddei ML, Giannoni E, Fiaschi T et al (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226:380–393

    Article  CAS  PubMed  Google Scholar 

  67. Meredith J, Fazeli B, Schwartz M (1993) The extracellular matrix as a survival factor. Mol Biol Cell 4:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berrier AL, Yamada KM (2007) Cell-matrix adhesion. J Cell Physiol 213:565–573

    Article  CAS  PubMed  Google Scholar 

  69. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  CAS  PubMed  Google Scholar 

  70. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guadamillas MC, Cerezo C, del Pozo MA (2011) Overcoming anoikis—pathways to anchorage-independent growth in cancer. J Cell Sci 124:3189–3197

    Article  CAS  PubMed  Google Scholar 

  72. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833:3481–3498

    Article  CAS  PubMed  Google Scholar 

  73. Buchheit CL, Weigel KJ, Schafer ZT (2014) Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 14:632–641

    Article  CAS  PubMed  Google Scholar 

  74. Frisch SM (2008) Caspase-8: fly or die. Cancer Res 68:4491–4493

    Article  CAS  PubMed  Google Scholar 

  75. Grossmann J, Walther K, Artinger M et al (2001) Apoptotic signalling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12:147–155

    CAS  PubMed  Google Scholar 

  76. Sourdeval M, Lemaire C, Deniaud A et al (2006) Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis 11:1545–1559

    Article  CAS  PubMed  Google Scholar 

  77. Sourdeval M, Boisvieux-Ulrich E, Gendron MC, Marano F (2009) Mitochondrial inside-out signalling during alkylating agent-induced anoikis. Front Biosci (Landmark Ed) 14:1917–1931

    Article  CAS  Google Scholar 

  78. Yoo BH, Wang Y, Erdogan M et al (2011) Oncogenic ras-induced down-regulation of pro-apoptotic protease caspase-2 is required for malignant transformation of intestinal epithelial cells. J Biol Chem 286:38894–38903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang WJ, Kuo JC, Yao CC, Chen RH (2002) DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 159:169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ho LH, Read SH, Dorstyn L et al (2008) Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 27:3393–3404

    Article  CAS  PubMed  Google Scholar 

  81. Han SP, Yap AS (2012) The cytoskeleton and classical cadherin adhesions. Subcell Biochem 60:111–135

    Article  CAS  PubMed  Google Scholar 

  82. Martin SS, Vuori K (2004) Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta 1692:145–157

    Article  CAS  PubMed  Google Scholar 

  83. Biswas KH (2020) Molecular mobility-mediated regulation of E-cadherin adhesion. Trends Biochem Sci 45:163–173

    Article  CAS  PubMed  Google Scholar 

  84. Hofmann C, Obermeier F, Artinger M et al (2007) Cell-cell contacts prevent anoikis in primary human colonic cells. Gastroenterology 132:587–600

    Article  CAS  PubMed  Google Scholar 

  85. Escaffit F, Perreault N, Jean D et al (2005) Repressed E-cadherin expression in the lower crypt of human small intestine: a cell marker of functional relevance. Exp Cell Res 302:206–220

    Article  CAS  PubMed  Google Scholar 

  86. Gilcrease MZ (2007) Integrin signalling in epithelial cells. Cancer Lett 247:1–25

    Article  CAS  PubMed  Google Scholar 

  87. Nagaprashantha LD, Vatsyayan R, Lelsani PC et al (2011) The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors. Int J Cancer 128:743–752

    Article  CAS  PubMed  Google Scholar 

  88. Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124:1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Capaldo CT, Farkas AE, Nusrat A (2014) Epithelial adhesive junctions. F1000Prime Rep 6:1

    Google Scholar 

  90. Beaulieu JF (1999) Integrins and human intestinal cell functions. Front Biosci 4:D310–D321

    Article  CAS  PubMed  Google Scholar 

  91. Ménard D, Beaulieu JF, Boudreau F et al (2005) Gastrointestinal Tract (GI Tract). In: Unsicker K, Krieglstein K (eds) Cell signalling and growth factors in development—Part II. Wiley-VCH, Verlag, pp 755–790

    Chapter  Google Scholar 

  92. Lévy E, Delvin E, Ménard D, Beaulieu JF (2009) Functional development of human fetal gastrointestinal tract. Methods Mol Biol 550:205–224

    Article  PubMed  CAS  Google Scholar 

  93. Potten CS (1997) Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol 273:G253–G2577

    CAS  PubMed  Google Scholar 

  94. Edelblum KL, Yan F, Yamaoka T, Polk PB (2006) Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflamm Bowel Dis 12:413–424

    Article  PubMed  Google Scholar 

  95. Tarnawski AS, Szabo I (2001) Apoptosis-programmed cell death and its relevance to gastrointestinal epithelium: survival signal from the matrix. Gastroenterology 120:294–299

    Article  CAS  PubMed  Google Scholar 

  96. Williams JM, Duckworth CA, Burkitt MD et al (2015) Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol 52:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grossmann J, Walther K, Artinger M et al (2002) Induction of apoptosis before shedding of human intestinal epithelial cells. Am J Gastroenterol 97:1421–1428

    Article  CAS  PubMed  Google Scholar 

  98. Vachon PH (2018) Methods for assessing apoptosis and anoikis in normal intestine/colon and colorectal cancer. Methods Mol Biol 1765:99–137

    Article  CAS  PubMed  Google Scholar 

  99. Watson AJ, Chu S, Sieck L et al (2005) Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 129:902–912

    Article  PubMed  Google Scholar 

  100. Bullen TF, Forrest S, Campbell F et al (2006) Characterization of epithelial cell shedding from human small intestine. Lab Invest 86:1052–1063

    Article  CAS  PubMed  Google Scholar 

  101. Vachon PH, Cardin E, Harnois C et al (2000) Early establishment of epithelial apoptosis in the developing human small intestine. Int J Dev Biol 44(8):891–898

    CAS  PubMed  Google Scholar 

  102. Gauthier R, Harnois C, Drolet JF et al (2001) Human intestinal epithelial cell survival; differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 280:C1540–C1554

    Article  CAS  PubMed  Google Scholar 

  103. Vachon PH, Cardin E, Harnois C et al (2001) Early acquisition of bowel segment-specific Bcl-2 expression profiles during the development of the human ileum and colon. Histol Histopathol 16:497–510

    CAS  PubMed  Google Scholar 

  104. Gauthier R, Laprise P, Cardin E et al (2001) Differential sensitivity to apoptosis between the human small and large intestinal mucosae: linkage with segment-specific regulation of Bcl-2 homologs and involvement of signalling pathways. J Cell Biochem 82:339–355

    Article  CAS  PubMed  Google Scholar 

  105. Harnois C, Demers MJ, Bouchard V et al (2004) Human intestinal epithelial crypt cell survival and death: complex modulations of Bcl-2 homologs by Fak, PI3-K/Akt-1, MEK/Erk, and p38 signalling pathways. J Cell Physiol 198:209–222

    Article  CAS  PubMed  Google Scholar 

  106. Bouchard V, Harnois C, Demers MJ et al (2008) β1 integrin/Fak/Src signalling in intestinal epithelial crypt cell survival: integration of complex regulatory mechanisms. Apoptosis 13:531–542

    Article  CAS  PubMed  Google Scholar 

  107. Vachon PH, Harnois C, Grenier A et al (2002) Differentiation state-selective roles of p38 isoforms in human intestinal epithelial cell anoikis. Gastroenterology 123:1980–1991

    Article  CAS  PubMed  Google Scholar 

  108. Dufour G, Demers MJ, Gagné D et al (2004) Human intestinal epithelial cell survival and anoikis: differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem 279:44113–44122

    Article  CAS  PubMed  Google Scholar 

  109. Beauséjour M, Thibodeau S, Demers MJ et al (2013) Suppression of anoikis in human intestinal epithelial cells: differentiation state-selective roles of α2β1, α3β1, α5β1, and α6β4 integrins. BMC Cell Biol 14:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bouchard V, Demers MJ, Thibodeau S et al (2007) Fak/Src signalling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol 212:717–728

    Article  CAS  PubMed  Google Scholar 

  111. Gagné D, Groulx JF, Benoit YD et al (2010) Integrin-linked kinase regulates migration and proliferation of human intestinal cells under a fibronectin-dependent mechanism. J Cell Physiol 222:387–400

    Google Scholar 

  112. Moss SF, Agarwal B, Arber N (1996) Increased intestinal Bak expression results in apoptosis. Biochem Biophys Res Commun 223:199–203

    Article  CAS  PubMed  Google Scholar 

  113. Liu LU, Holt PR, Krivosheyev V, Moss SF (1999) Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue. Gut 45:45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stutzmann J, Bellissent-Waydelich A, Ll Fontao et al (2000) Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc Res Tech 51:179–190

    Article  CAS  PubMed  Google Scholar 

  115. Teller IC, Auclair J, Herring E et al (2007) Laminins in the developing and adult human small intestine: relation with the functional absorptive unit. Dev Dyn 236:1980–1990

    Article  CAS  PubMed  Google Scholar 

  116. Beauséjour M, Noël D, Thibodeau S et al (2012) Integrin/Fak/Src-mediated regulation of cell survival and anoikis in human intestinal epithelial crypt cells: selective engagement and roles of PI3-K isoform complexes. Apoptosis 17:566–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Benoit YD, Larrivée JF, Groulx JF et al (2010) Integrin α8β1 confers anoikis susceptibility to human intestinal epithelial crypt cells. Biochem Biophys Res Commun 399:434–439

    Article  CAS  PubMed  Google Scholar 

  118. Basora N, Herring-Gillam FE, Boudreau F et al (1999) Expression of functionally distinct variants of the β4A integrin subunit in relation to the differentiation state in human intestinal cells. J Biol Chem 274:29819–29825

    Article  CAS  PubMed  Google Scholar 

  119. Kline CL, Olson TL, Irby RB (2009) Src activity alters alpha3 integrin expression in colon tumor cells. Clin Exp Metastasis 26:77–87

    Article  CAS  PubMed  Google Scholar 

  120. Fouquet S, Lugo-Martínez VH, Faussat AM et al (2004) Early loss of E-cadherin from cell-cell contacts is involved in the onset of anoikis in enterocytes. J Biol Chem 279:43061–43069

    Article  CAS  PubMed  Google Scholar 

  121. Hausmann M, Leucht K, Ploner C et al (2011) Bcl-2 modifying factor (Bmf) is a central regulator of anoikis in human intestinal epithelial cells. J Biol Chem 286:26533–26540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wilhelmsen K, Litjens SH, Sonnenberg A (2006) Multiple functions of the integrin alpha6beta4 in epidermal homeostasis and tumorigenesis. Mol Cell Biol 26:2877–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA (2015) Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25:234–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McNally EM, Pytel P (2007) Muscle diseases: the muscular dystrophies. Annu Rev Pathol 2:87–109

    Article  CAS  PubMed  Google Scholar 

  126. Uitto J, McGrath JA, Rodeck U et al (2010) Progress in epidermolysis bullosa research: toward treatment and cure. J Invest Dermatol 130:1778–1784

    Article  CAS  PubMed  Google Scholar 

  127. Frisch SM, Schaller M, Cieply B (2013) Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 126:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shanmugathasan M, Jothy S (2000) Apoptosis, anoikis and their relevance to the pathobiology of colon cancer. Pathol Int 50:273–279

    Article  CAS  PubMed  Google Scholar 

  129. Bates RC, Mercurio AM (2005) The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4:365–370

    Article  CAS  PubMed  Google Scholar 

  130. Gurzu S, Silveanu C, Fetyko A et al (2016) Systematic review of the old and new concepts in the epithelial-mesenchymal transition of colorectal cancer. World J Gastroenterol 22:6764–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vu T, Datta PK (2017) Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel) 9:171

    Article  CAS  Google Scholar 

  132. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18:128–134

    Article  CAS  PubMed  Google Scholar 

  133. Campbell K (2018) Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 55:30–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tzanakakis G, Kavasi RM, Voudouri K et al (2018) Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev Dyn 247:368–381

    Article  PubMed  Google Scholar 

  135. Yang L, Shang Z, Long S et al (2018) Roles of genetic and microenvironmental factors in cancer epithelial-to-mesenchymal transition and therapeutic implication. Exp Cell Res 370:190–197

    Article  CAS  PubMed  Google Scholar 

  136. Pantakar M, Mattila T, Väyrynen JP et al (2020) Putative anoikis-resistant subpopulations in colorectal carcinoma: a marker of adverse prognosis. APMIS 128:390–400

    Article  CAS  Google Scholar 

  137. Demers MJ, Thibodeau S, Noël D et al (2009) Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signalling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem 107:639–654

    Article  CAS  PubMed  Google Scholar 

  138. Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ (2012) Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev 31:393–414

    Article  CAS  Google Scholar 

  139. Weiswald L-B, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia 17:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  140. Le Tourneau C, Faivre S, Raymond E (2007) The role of integrins in colorectal cancer. Oncology (Williston Park) 21:21–24

    Google Scholar 

  141. Agochiya M, Brunton VG, Owens DW et al (1999) Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18:5646–5653

    Article  CAS  PubMed  Google Scholar 

  142. Lark AL, Livasy CA, Calvo B et al (2003) Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res 9:215–222

    CAS  PubMed  Google Scholar 

  143. Chen J (2008) Is Src the key to understanding metastasis and developing new treatments for colon cancer? Nat Clin Pract Gastroenterol Hepatol 5:306–307

    Article  CAS  PubMed  Google Scholar 

  144. Ding J, Li D, Wang X et al (2008) Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology 55:2072–2076

    CAS  PubMed  Google Scholar 

  145. Hao HF, Naomoto Y, Bao XH et al (2009) Progress in researches about focal adhesion kinase in gastrointestinal tract. World J Gastroenterol 15:5916–5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rosen K, Coll ML, Li A, Filmus J (2001) Transforming growth factor-α prevents detachment-induced inhibition of c-Src kinase activity, Bcl-XL down-regulation, and apoptosis in intestinal epithelial cells. J Biol Chem 276:37273–37279

    Article  CAS  PubMed  Google Scholar 

  147. Coll ML, Rosen K, Ladeda V, Filmus J (2002) Increased Bcl-XL expression mediates v-Src-induced resistance to anoikis in intestinal epithelial cells. Oncogene 21:2908–2913

    Article  CAS  PubMed  Google Scholar 

  148. Windham TC, Parikh NU, Siwak DR et al (2002) Src activation regulates anoikis in human colon tumor cell lines. Oncogene 21:7797–7807

    Article  CAS  PubMed  Google Scholar 

  149. Golubovskaya VM, Gross S, Kaur AS et al (2003) Simultaneous inhibition of focal adhesion kinase and SRC enhances detachment and apoptosis in colon cancer cell lines. Mol Cancer Res 1:755–764

    CAS  PubMed  Google Scholar 

  150. Loza-Coll MA, Perera S, Shi W, Filmus J (2005) A transient increase in the activity of Src-family kinases induced by cell detachment delays anoikis of intestinal epithelial cells. Oncogene 24:1727–1737

    Article  CAS  PubMed  Google Scholar 

  151. Avizienyte E, Brunton VG, Fincham VJ, Frame MC (2005) The SRC-induced mesenchymal state in late-stage colon cancer cells. Cells Tissues Organs 179:73–80

    Article  CAS  PubMed  Google Scholar 

  152. von Wichert G, Krndija D, Schmid H (2008) Focal adhesion kinase mediates defects in the force-dependent reinforcement of initial integrin-cytoskeleton linkages in metastatic colon cancer cell lines. Eur J Cell Biol 87:1–16

    Article  CAS  Google Scholar 

  153. Michl P, Downward J (2005) Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers. Z Gastroenterol 43:1133–1139

    Article  CAS  PubMed  Google Scholar 

  154. Silvestris N, Tommasi S, Petriella D et al (2009) The dark side of the moon: the PI3K/PTEN/AKT pathway in colorectal carcinoma. Oncology 77:69–74

    Article  CAS  PubMed  Google Scholar 

  155. Zhang J, Roberts TM, Shivdasani RA (2011) Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology 141:50–61

    Article  CAS  PubMed  Google Scholar 

  156. Cui B, Tao J, Yang Y (2012) Studies on the expression patterns of class I PI3K catalytic subunits and its prognostic significance in colorectal cancer. Cell Biochem Biophys 62:47–54

    Article  CAS  PubMed  Google Scholar 

  157. Bénistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19:5083–5090

    Article  PubMed  Google Scholar 

  158. Itoh N, Semba S, Ito M et al (2002) Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 94:3127–3134

    Article  CAS  PubMed  Google Scholar 

  159. Agarwal A, Das K, Lerner N et al (2005) The AKT/I kappa B kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-kappa B and beta-catenin. Oncogene 24:1021–1031

    Article  CAS  PubMed  Google Scholar 

  160. Samuels Y, Diaz LA Jr, Schmidt-Kittler O et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7:561–573

    Article  CAS  PubMed  Google Scholar 

  161. Rychahou PG, Jackson LN, Silva SR et al (2006) Targeted molecular therapy of the PI3K pathway: therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann Surg 243:833–844

    Article  PubMed  PubMed Central  Google Scholar 

  162. Rychahou PG, Kang J, Gulhati P et al (2008) Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 105:20315–20320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Martin-Fernandez C, Bales J, Hodgkinson C et al (2009) Blocking phosphoinositide 3-kinase activity in colorectal cancer cells reduces proliferation but does not increase apoptosis alone or in combination with cytotoxic drugs. Mol Cancer Res 7:955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sun Y, Zhao S, Tian H et al (2009) Depletion of PI3K p85alpha induces cell cycle arrest and apoptosis in colorectal cancer cells. Oncol Rep 22:1435–1441

    CAS  PubMed  Google Scholar 

  165. Ericson K, Gan C, Cheong I et al (2010) Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 107:2598–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang Z, Li Y, Liu ET, Yu Q (2004) Susceptibility to cell death induced by blockade of MAPK pathway in human colorectal cancer cells carrying Ras mutations is dependent on p53 status. Biochem Biophys Res Commun 322:609–613

    Article  CAS  PubMed  Google Scholar 

  167. Drosopoulos KG, Roberts ML, Cermak L et al (2005) Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem 280:22856–22867

    Article  CAS  PubMed  Google Scholar 

  168. Chiacchiera F, Grossi V, Cappellari M et al (2012) Blocking p38/ERK crosstalk affects colorectal cancer growth by inducing apoptosis in vitro and in preclinical mouse models. Cancer Lett 324:98–108

    Article  CAS  PubMed  Google Scholar 

  169. Burotto M, Chiou VL, Lee JM, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120:3446–3456

    Article  CAS  PubMed  Google Scholar 

  170. Neuzillet C, Tijeras-Raballand A, de Mestier L et al (2014) MEK in cancer and cancer therapy. Pharmacol Ther 141:160–171

    Article  CAS  PubMed  Google Scholar 

  171. Conti A, Majorini MT, Elliott R et al (2015) Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway. Oncotarget 6:10994–11008

    Article  PubMed  PubMed Central  Google Scholar 

  172. Raja M, Zverev M, Seipel K et al (2015) Assessment of the in vivo activity of PI3K and MEK inhibitors in genetically defined models of colorectal cancer. Mol Cancer Ther 14:2175–2186

    Article  CAS  PubMed  Google Scholar 

  173. Song Q, Sun X, Guo H, Yu Q (2017) Concomitant inhibition of receptor tyrosine kinases and downstream AKT synergistically inhibited growth of KRAS/BRAF mutant colorectal cancer cells. Oncotarget 8:5003–5015

    Article  PubMed  Google Scholar 

  174. Zhang P, Kawakami H, Liu W et al (2018) Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer. Mol Cancer Res 16:378–389

    Article  CAS  PubMed  Google Scholar 

  175. Song J, Zhang J, Wang J et al (2014) beta1 integrin modulates tumor growth and apoptosis of human colorectal cancer. Oncol Rep 32:302–308

    Article  CAS  PubMed  Google Scholar 

  176. Ferraro A, Mourtzoukou D, Kosmidou V et al (2013) EZH2 is regulated by ERK/AKT and targets integrin alpha2 gene to control epithelial-mesenchymal transition and anoikis in colon cancer cells. Int J Biochem Cell Biol 45:243–254

    Article  CAS  PubMed  Google Scholar 

  177. Boudjadi S, Bernatchez G, Senicourt B et al (2017) Involvement of the integrin alpha1beta1 in the progression of colorectal cancer. Cancers (Basel) 9:96

    Article  CAS  Google Scholar 

  178. Wan X, Li T (2021) Ropivacaine inhibits the proliferation and migration of colorectal cancer cells through ITGB1. Bioengineered 12:44–53

    Article  CAS  Google Scholar 

  179. Cantor DI, Cheruku HR, Nice EC, Baker MS (2015) Integrin alphavbeta6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev 34:715–734

    Article  CAS  PubMed  Google Scholar 

  180. Pelillo C, Bergamo A, Mollica H et al (2015) Colorectal cancer metastases settle in the hepatic microenvironment through alpha5beta1 integrin. J Cell Biochem 116:2385–2396

    Article  CAS  PubMed  Google Scholar 

  181. Li T, Wan Y, Su Z et al (2020) Mesenchymal stem cell-derived exosomal microRNA-3940-5p inhibits colorectal cancer metastasis by targeting integrin alpha6. Dig Dis Sci (online ahead of print. https://doi.org/10.1007/s10620-020-06458-1)

  182. Tai YL, Lai IR, Peng YJ et al (2016) Activation of focal adhesion kinase through an interaction with beta4 integrin contributes to tumorigenicity of colon cancer. FEBS Lett 590:1826–1837

    Article  CAS  PubMed  Google Scholar 

  183. Yoshida T, Akatsuka T, Imanaka-Yoshida K (2015) Tenascin-C and integrins in cancer. Cell Adh Migr 9:96–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Desloges N, Basora N, Perreault N et al (1998) Regulated expression of the integrin alpha9beta1 in the epithelium of the developing human gut and in intestinal cell lines: relation with cell proliferation. J Cell Biochem 71:536–545

    Article  CAS  PubMed  Google Scholar 

  185. Kozlova NI, Morozevich GE, Chubukina AN, Berman AE (2001) Integrin alphavbeta3 promotes anchorage-dependent apoptosis in human intestinal carcinoma cells. Oncogene 20:4710–4717

    Article  CAS  PubMed  Google Scholar 

  186. Morozevich GE, Kozlova NI, Chubukina AN, Berman AE (2003) Role of integrin alphavbeta3 in substrate-dependent apoptosis of human intestinal carcinoma cells. Biochemistry (Mosc) 68:416–423

    Article  CAS  Google Scholar 

  187. Tian L, Chen M, He Q et al (2020) MicroRNA-199a-5p suppresses cell proliferation, migration and invasion by targeting ITGA3 in colorectal cancer. Mol Med Rep 22:2307–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Beaulieu JF (2010) Integrin α6β4 in colorectal cancer. World J Gastrointest Pathophysiol 1:3–11

    Article  PubMed  PubMed Central  Google Scholar 

  190. Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 12:e3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Deb M, Sengupta D, Patra SK (2012) Integrin-epigenetics: a system with imperative impact on cancer. Cancer Metastasis Rev 31:221–234

    Article  CAS  PubMed  Google Scholar 

  194. Beaulieu JF (2019) Integrin α6β4 in colorectal cancer: expression, regulation, functional alterations and use as a biomarker. Cancers (Basel) 12:41

    Article  CAS  Google Scholar 

  195. Kai F, Drain AP, Weaver VM (2019) The extracellular matrix modulates the metastatic journey. Dev Cell 49:332–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kechagia JZ, Ivaska J, Rocha-Cusachs P (2019) Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 20:457–473

    Article  CAS  PubMed  Google Scholar 

  197. Janiszewska M, Primi MC, Izard T (2020) Cell adhesion in cancer: beyond the migration of single cells. J Biol Chem 295:2495–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lorusso G, Ruëgg C, Kuonen F (2020) Targeting the extra-cellular matrix-tumor cell crosstalk for anti-cancer therapy: emerging alternatives to integrin inhibitors. Front Oncol 10:1231

    Article  PubMed  PubMed Central  Google Scholar 

  199. Montagner M, Dupont S (2020) Mechanical forces as determinants of disseminated metastatic cell fate. Cells 9:250

    Article  CAS  PubMed Central  Google Scholar 

  200. Samaržija I, Dekanić A, Humphries JD et al (2020) Integrin crosstalk contributes to the complexity of signalling and unpredictable cancer cell fates. Cancers (Basel) 12:1910

    Article  CAS  Google Scholar 

  201. Bélanger I, Beaulieu JF (2000) Tenascin in the developing and adult human intestine. Histol Histopathol 15:577–585

    PubMed  Google Scholar 

  202. Erikson HP, Bourdon MA (1989) Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Ann Rev Cell Biol 5:71–92

    Article  Google Scholar 

  203. Takashi Y, Sawada G, Kurashige J et al (2013) Tumor-derived tenascin-C promotes the epithelial-mesenchymal transition in colorectal cancer cells. Anticancer Res 33:1927–1934

    Google Scholar 

  204. Yang Z, Zhang C, Qi W et al (2018) Tenascin-C as a prognostic determinant of colorectal cancer through induction of epithelial-to-mesenchymal transition and proliferation. Exp Mol Pathol 105:216–222

    Article  CAS  PubMed  Google Scholar 

  205. Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 244:143–163

    Article  CAS  PubMed  Google Scholar 

  206. D’Ardenne AJ, Burns J, Sykes BC, Bennett MK (1983) Fibronectin and type III collagen in epithelial neoplasms of gastrointestinal tract and salivary gland. J Clin Pathol 36:756–763

    Article  PubMed  PubMed Central  Google Scholar 

  207. Gulubova M, Vlaykova T (2006) Immunohistochemical assessment of fibronectin and tenascin and their integrin receptors alpha5beta1 and alpha9beta1 in gastric and colorectal cancers with lymph node and liver metastases. Acta Histochem 108:25–35

    Article  CAS  PubMed  Google Scholar 

  208. Saito N, Nishimura H, Kameoka S (2008) Clinical significance of fibronectin expression in colorectal cancer. Mol Med Rep 1:77–81

    CAS  PubMed  Google Scholar 

  209. Yi W, Xiao E, Ding R et al (2016) High expression of fibronectin is associated with poor prognosis, cell proliferation and malignancy via the NF-κB/p53-apoptosis signaling pathway in colorectal cancer. Oncol Rep 36:3145–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Perreault N, Herring-Gillam FE, Desloges N (1998) Epithelial vs mesenchymal contribution to the extracellular matrix in the human intestine. Biochem Biophys Res Commun 248:121–126

    Article  CAS  PubMed  Google Scholar 

  211. Cai X, Liu C, Zhang TN et al (2018) Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion. J Cell Biochem 119:4717–4728

    Article  CAS  PubMed  Google Scholar 

  212. Ou J, Peng Y, Deng J et al (2014) Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition. Carcinogenesis 35:1661–1670

    Article  CAS  PubMed  Google Scholar 

  213. Teller IC, Beaulieu JF (2001) Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev Mol Med 3:1–18

    Article  CAS  PubMed  Google Scholar 

  214. Gulubova MV, Vlaykova TI (2006) Significance of tenascin-C, fibronectin, laminin, collagen IV, alpha5beta1 and alpha9beta1 integrins and fibrotic capsule formation around liver metastases originating from cancers of the digestive tract. Neoplasma 53:372–383

    CAS  PubMed  Google Scholar 

  215. Moilanen JM, Kokkonen M, Löffek S et al (2015) Collagen XVII expression correlates with the invasion and metastasis of colorectal cancer. Hum Pathol 46:434–442

    Article  CAS  PubMed  Google Scholar 

  216. Crotti S, Piccoli M, Rizzolio F et al (2017) Extracellular matrix and colorectal cancer: how surrounding microenvironment affects cancer cell behavior? J Cell Physiol 232:967–975

    Article  CAS  PubMed  Google Scholar 

  217. Kirkland SC (2009) Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in colorectal carcinoma cells. Br J Cancer 101:320–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Javadi S, Zhiani M, Mousavi MA, Fathi M (2020) Crosstalk between epidermal growth factor receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur J Cell Biol 99:151083

    Article  CAS  PubMed  Google Scholar 

  219. Sarker FA, Prior VG, Bax S, O’Neill GM (2020) Forcing a growth factor response—tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 133:jcs242461

    Google Scholar 

  220. Streuli CH, Akhtar N (2009) Signal co-operation between integrins and other receptor systems. Biochem J 418:491–506

    Article  CAS  PubMed  Google Scholar 

  221. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lindsey S, Langhans SA (2014) Crosstalk of oncogenic signalling pathways during epithelial-mesenchymal transition. Front Oncol 4:358

    Article  PubMed  PubMed Central  Google Scholar 

  224. McManus S, Chababi W, Arsenault D et al (2018) Dissecting oncogenic RTK pathways in colorectal cancer initiation and progression. Methods Mol Biol 1765:27–42

    Article  CAS  PubMed  Google Scholar 

  225. Guha D, Saha T, Bose S et al (2019) Integrin-EGF interaction regulates anoikis resistance in colon cancer cells. Apoptosis 24:958–971

    Article  CAS  PubMed  Google Scholar 

  226. Huveneers S, de Rooij J (2013) Mechanosensitive systems at the cadherin-F-actin interface. J Cell Sci 126:403–413

    Article  CAS  PubMed  Google Scholar 

  227. Elzagheid A, Bruhmeida A, Laato M et al (2012) Loss of E-cadherin expression predicts disease recurrence and shorter survival in colorectal cancer. APMIS 120:539–548

    Article  PubMed  Google Scholar 

  228. Yu JA, Kim SH, Hong HK et al (2014) Loss of E-cadherin expression is associated with a poor prognosis in stage III colorectal cancer. Oncology 86:318–328

    Article  CAS  Google Scholar 

  229. Buda A, Pignateli M (2011) E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis. Cell Commun Adhes 18:133–143

    Article  CAS  PubMed  Google Scholar 

  230. Daulagala AC, Bridges MC, Kourtidis A (2019) E-cadherin beyond structure: a signaling hub in colon homeostasis and disease. Int J Mol Sci 20:2756

    Article  CAS  PubMed Central  Google Scholar 

  231. Yu W, Yang L, Li T, Zhang Y (2019) Cadherin signaling in cancer: its functions and role as a therapeutic target. Front Oncol 9:989

    Article  PubMed  PubMed Central  Google Scholar 

  232. Losi L, Zanocco-Marani T, Grabde A (2020) Cadherins down-regulation: towards a better understanding of their relevance in colorectal cancer. Histol Histopathol (online ahead of print. https://doi.org/10.14670/hh-18-236)

  233. Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326

    Article  CAS  PubMed  Google Scholar 

  234. Serrels A, Canel M, Brunton VG, Frame MC (2011) Src/Fak-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh Migr 5:360–365

    Article  PubMed  PubMed Central  Google Scholar 

  235. Bartolomé A, Barderas R, Torres S et al (2014) Cadherin-17 interacts with α2β1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis. Oncogene 33:1658–1669

    Article  PubMed  CAS  Google Scholar 

  236. Bartolomé RA, Peláez-Garcia A, Gomez I et al (2014) An RGD motif present in cadherin 17 induces integrin activation and tumor growth. J Biol Chem 289:34801–34814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Casal JI, Bartolomé RA (2018) RGD cadherins and α2β1 integrin in cancer metastasis: a dangerous liaison. Biochim Biophys Acta Rev Cancer 1869:321–332

    Article  CAS  PubMed  Google Scholar 

  238. Casal JI, Bartolomé RA (2019) Beyond N-cadherin, relevance of cadherins 5, 6 and 17 in cancer progression and metastasis. Int J Mol Sci 20:3373

    Article  CAS  PubMed Central  Google Scholar 

  239. Müller EJ, Williamson L, Kolly C, Suter MM (2008) Outside-in signalling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 128:501–516

    Article  PubMed  CAS  Google Scholar 

  240. Lemmon MA, Schlessinger J (2010) Cell signalling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Schackmann RC, Tenhagen M, van de Ven RA, Derksen PW (2013) p120-catenin in cancer—mechanisms, models and opportunities for intervention. J Cell Sci 126:3515–3525

    Article  CAS  PubMed  Google Scholar 

  242. Tashiro E, Henmi S, Odake H et al (2016) Involvement of the MEK/Erk pathway in EGF-induced E-cadherin down-regulation. Biochem Biophys Res Commun 477:801–806

    Article  CAS  PubMed  Google Scholar 

  243. Chadwick VS (1991) In: Phillip SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, physiopathology, and diseases. Raven Press, New York, pp 445–463

    Google Scholar 

  244. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Vermeire S, Van Assche G, Rutgeerts P (2012) Classification of inflammatory bowel disease: the old and the new. Curr Opin Gastroenterol 28:321–326

    Article  PubMed  Google Scholar 

  246. Negroni A, Cucchiara S, Stronati L (2015) Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators Inflamm 2015:250762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Blander JM (2016) Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J 283:2720–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Francoeur C, Escaffit F, Vachon PH, Beaulieu JF (2004) Proinflammatory cytokines TNF-alpha and IFN-gamma alter laminin expression under an apoptosis-independent mechanism in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 287:G592–G598

    Article  CAS  PubMed  Google Scholar 

  249. Turcotte JF, Wong K, Mah SJ et al (2012) Increased epithelial gaps in the small intestine are predictive of hospitalization and surgery in patients with inflammatory bowel disease. Clin Transl Gastroenterol 3:e19

    Article  PubMed  PubMed Central  Google Scholar 

  250. Zbar AP, Simopoulos C, Karayiannakis AJ (2004) Cadherins: an integral role in inflammatory bowel disease and mucosal restitution. J Gastroenterol 39:413–421

    Article  CAS  PubMed  Google Scholar 

  251. Solanas G, Batlle E (2011) Control of cell adhesion and compartmentalization in the intestinal epithelium. Exp Cell Res 317:2695–2701

    Article  CAS  PubMed  Google Scholar 

  252. Mehta S, Nijhuis A, Kumagai T (2015) Defects in the adherens junction complex (E-cadherin/ β-catenin) in inflammatory bowel disease. Cell Tissue Res 360:749–760

    Article  CAS  PubMed  Google Scholar 

  253. Scharl M, Huber N, Lang S et al (2015) Hallmarks of epithelial to mesenchymal transition are detectable in Crohn’s disease associated intestinal fibrosis. Clin Transl Med 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  254. Stone RC, Pastar I, Ojeh N et al (2016) Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 365:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Jiang H, Shen J, Ran Z (2018) Epithelial-mesenchymal transition in Crohn’s disease. Mucosal Immunol 11:294–303

    Article  CAS  PubMed  Google Scholar 

  256. Riedl S, Kadmon M, Tandara A et al (1997) Tenascin-C tissue concentration in inflammatory and neoplastic diseases of the colon mucosa. Anticancer Res 17:3165–3166

    CAS  PubMed  Google Scholar 

  257. Bouatrouss Y, Herring-Gillam FE, Gosselin J et al (2000) Altered expression of laminins in Crohn’s disease small intestinal mucosa. Am J Pathol 156:45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Francoeur C, Bouatrouss Y, Seltana A et al (2009) Degeneration of the pericryptal myofibroblast sheath by proinflammatory cytokines in inflammatory bowel diseases. Gastroenterology 136:268–277

    Article  CAS  PubMed  Google Scholar 

  259. Spenlé C, Lefebvre O, Lacroute J et al (2014) The laminin response in inflammatory bowel disease: protection or malignancy? PLoS ONE 9:e111336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Moriggi M, Pastorelli L, Torretta E et al (2017) Contribution of extracellular matrix and signal mechanotransduction to epithelial cell damage in inflammatory bowel disease patients: a proteomic study. Proteomics 17:1700164

    Article  CAS  Google Scholar 

  261. Mortensen JH, Manon-Jensen T, Jensen MD et al (2017) Ulcerative colitis, Crohn’s disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn’s disease. PLoS ONE 12:e0185855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Petrey AC, de la Motte CA (2017) The extracellular matrix in IBD: a dynamic mediator of inflammation. Curr Opin Gastroenterol 33:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Dyson JK, Rutter MD (2012) Colorectal cancer in inflammatory bowel disease: what is the real magnitude of the risk? World J Gastroenterol 18:3839–3848

    Article  PubMed  PubMed Central  Google Scholar 

  264. Kim ER, Chang DK (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol 20:9872–9881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lutgens M, Vermeire S, Van Oijen M et al (2015) A rule for determining risk of colorectal cancer in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol 13:148–154

    Article  PubMed  Google Scholar 

  266. Ruemmele FM, Dionne S, Levy E, Seidman EG (1999) TNFalpha-induced IEC-6 cell apoptosis requires activation of ICE caspases whereas complete inhibition of the caspase cascade leads to necrotic cell death. Biochem Biophys Res Commun 260:159–166

    Article  CAS  PubMed  Google Scholar 

  267. Ohta Y, Sato T (2014) Intestinal tumor in a dish. Front Med (Lausanne) 1:14

    Google Scholar 

  268. Golovko D, Kedrin D, Yilmaz ÖH, Roper J (2015) Colorectal cancer models for novel drug discovery. Expert Opin Drug Discov 10:1217–1229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Burada F, Nicoli ER, Ciurea ME et al (2015) Autophagy in colorectal cancer: an important switch from physiology to pathology. World J Gastrointest Oncol 7:271–284

    Article  PubMed  PubMed Central  Google Scholar 

  270. Zhou H, Yuan M, Yu Q et al (2016) Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark 17:1–10

    Article  CAS  PubMed  Google Scholar 

  271. Mowers EE, Sharifi MN, Macleod KF (2017) Autophagy in cancer metastasis. Oncogene 36:1619–1630

    Article  CAS  PubMed  Google Scholar 

  272. Vlahakis A, Debnath J (2017) The interconnections between autophagy and integrin-mediated cell adhesion. J Mol Biol 429:515–530

    Article  CAS  PubMed  Google Scholar 

  273. Mowers EE, Sharifi MN, Macleod KF (2018) Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 285:1751–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Pandurangan AK, Divya T, Kumar K et al (2018) Colorectal carcinogenesis: insights into the cell death and signal transduction pathways: a review. World J Gastrointest Oncol 10:244–259

    Article  PubMed  PubMed Central  Google Scholar 

  275. Mason JA, Hagel KR, Hawk MA, Schafer ZT (2017) Metabolism during ECM Detachment: Achilles Heel of Cancer Cells? Trends Cancer 3:475–481

    Article  CAS  PubMed  Google Scholar 

  276. Sciacovelli M, Frezza C (2017) Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J 284:3132–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Hawk MA, Schafer ZT (2018) Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem 293:7531–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Takigawa H, Kitadai Y, Shinagawa K et al (2017) Mesenchymal stem cells induce epithelial to mesenchymal transition in colon cancer cells through direct cell-to-cell contact. Neoplasia 19:429–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MB was supported by scholarships from the National Sciences and Engineering Research Council (NSERC) and the Fonds de la Recherche du Québec – Santé (FRQS). Original work was supported by a research grant from NSERC to PHV (RGPIN 227935-2013). PHV was a Researcher of the Canadian Foundation for Innovation (CFI) and a member of the FRQS-funded Centre de Recherche (CRC) du Centre Hospitalier Universitaire de Sherbrooke (CHUS), until his planned early (and happy) retirement in July 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre H. Vachon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beauséjour, M., Boutin, A., Vachon, P.H. (2021). Anoikis and the Human Gut Epithelium in Health and Disease. In: Frisch, S.M. (eds) Anoikis. Springer, Cham. https://doi.org/10.1007/978-3-030-73856-3_5

Download citation

Publish with us

Policies and ethics