Skip to main content

Fuzzy Logic-Based Approaches in Supply Chain Risk Management: A Review

  • Chapter
  • First Online:
Computational Intelligence for Business Analytics

Abstract

Uncertainty is inherent in the supply chains nature. In the context of various uncertainties, risk management plays a crucial role in effective supply chain management. The uncertainty involved in the risk assessment process can be divided into two types: random uncertainty and epistemic uncertainty. The fuzzy theory has been applied to address uncertainties in this context. The purpose of this paper is to develop a literature review of the major contributions of fuzzy logic in addressing uncertainty in supply chain risk management approaches. The results revealed that integration with disruptive analysis tools and multi-criteria decision-making methods are the most common types adopted, with the increasing trend of Petri nets and Bayesian approaches. The reviewed literature highlights some limitations related to the holistic complexity of risks in supply chains, the dynamic nature of the environment, and the reliability of the knowledge base in the assessment. In that sense, these observations reveal interesting future lines of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salehi, S., Khanbabaei, M., Sabzehparvar, M.: A model for supply chain risk management in the automotive industry using fuzzy analytic hierarchy process and fuzzy TOPSIS. Benchmark. Int. J. 25(9), 3831–3857. https://doi.org/10.1108/BIJ-11-2016-0167

  2. Ho, W., Zheng, T., Yildiz, H., Talluri, S.: Supply chain risk management: a literature review. Int. J. Product. Res. 53(16), 5031–5069 (2015). https://doi.org/10.1080/00207543.2015.1030467

    Article  Google Scholar 

  3. Aven, T., Ylönen, M.: Safety regulations: implications of the new risk perspectives. Reliab. Eng. Syst. Saf. 149, 164–217 (2016). https://doi.org/10.1016/j.ress.2016.01.007

    Article  Google Scholar 

  4. Islam, M., Nepal, M.: A Fuzzy-Bayesian model for risk assessment in power plant projects. Proc. Comput. Sci. 100, 963–970 (2016). https://doi.org/10.1016/j.procs.2016.09.259

    Article  Google Scholar 

  5. Feryal, G., Toktas, P.: A novel fuzzy risk matrix based risk assessment approach. Kybernetes 47(9), 1721–1751 (2018). https://doi.org/10.1108/K-12-2017-0497

    Article  Google Scholar 

  6. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.2307/2272014

    Article  MATH  Google Scholar 

  7. Ross, T.: Fuzzy logic with engineering applications, 3rd edn. Wiley, Chichester (2010). https://doi.org/10.1002/9781119994374

  8. Berenji, H., Anantharaman, R., Karegar, M.: A new two-stage fuzzy decision making model in supply chain risk management. Int. Conf. Innov. Manage. Serv. 14, 44–49 (2011)

    Google Scholar 

  9. Wu, D., Wu, D., Zhang, Y., Olson, D.: Supply chain outsourcing risk using an integrated stochastic-fuzzy optimization approach. Inf. Sci. 235, 242–258 (2013). https://doi.org/10.1016/j.ins.2013.02.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Radivojević, G., Gajović, V.: Supply chain risk modeling by AHP and fuzzy AHP methods. J. Risk Res. 17(3), 337–352 (2014). https://doi.org/10.1080/13669877.2013.808689

    Article  Google Scholar 

  11. Aqlan, F., Lam, S.: A fuzzy-based integrated framework for supply chain risk assessment. Int. J. Product. Econ. 161, 54–63 (2015). https://doi.org/10.1016/j.ijpe.2014.11.013

    Article  Google Scholar 

  12. Hoi-Lam, M., Wai-Hung, C.: A fuzzy-based house of risk assessment method for manufacturers in global supply chains. Indus. Manage. Data Syst. 118(7), 1463–1476 (2018). https://doi.org/10.1108/IMDS-10-2017-0467

    Article  Google Scholar 

  13. Denyer, D., Tranfield, D.: Producing a systematic review. In: The SAGE Handbook of Organizational Research Methods. Sage Publications Los, Ángeles (2009)

    Google Scholar 

  14. Sodhi, M., Son, B., Tang, C.: Researchers’ perspectives on supply chain risk management. Product. Oper. Manage. 21(1), 1–13 (2011). https://doi.org/10.1111/j.1937-5956.2011.01251.x

    Article  Google Scholar 

  15. Huang, H., Chou, Y., Chang, S.: A dynamic system model for proactive control of dynamic events in full-load states of manufacturing chains. Int. J. Product. Res. 47(9), 2485–2506 (2009). https://doi.org/10.1080/00207540701484913

    Article  MATH  Google Scholar 

  16. Samvedi, A., Jain, V., Chan, F.: Quantifying risks in a supply chain through integration of fuzzy AHP and fuzzy TOPSIS. Int. J. Product. Res. 51(8), 2433–2442 (2013). https://doi.org/10.1080/00207543.2012.741330

    Article  Google Scholar 

  17. Kumar, S., Kumar, P., Kumar, B.: Risk analysis in green supply chain using fuzzy AHP approach: a case study. Resour. Conserv. Recycl. 104, 375–390 (2015). https://doi.org/10.1016/j.resconrec.2015.01.001

    Article  Google Scholar 

  18. Rostamzadeh, R., Ghorabaee, M., Govindan, K., Esmaeili, A., Khajeh, H.: Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS-CRITIC approach. J. Cleaner Product. 175, 651–669 (2018). https://doi.org/10.1016/j.jclepro.2017.12.071

    Article  Google Scholar 

  19. Zhang, L., Wu, X., Skibniewski, M., Zhong, J., Lu, Y.: Bayesian-network-based safety risk analysis in construction projects. Reliab. Eng. Syst. Saf. 131, 29–39 (2014). https://doi.org/10.1016/j.ress.2014.06.006

    Article  Google Scholar 

  20. John, A., Paraskevadakis, D., Bury, A., Yang, Z., Riahi, R., Wang, J.: An integrated fuzzy risk assessment for seaport operations. Saf. Sci. 68, 180–194 (2014). https://doi.org/10.1016/j.ssci.2014.04.001

    Article  Google Scholar 

  21. Kabir, S., Walker, M., Papadopoulos, Y., Rüde, E., Securius, P.: Fuzzy temporal fault tree analysis of dynamic systems. Int. J. Approx. Reason. 77, 20–37 (2016). https://doi.org/10.1016/j.ijar.2016.05.006

    Article  MathSciNet  MATH  Google Scholar 

  22. Mangla, S., Luthra, S., Jakhar, S.: Benchmarking the risk assessment in green supply chain using fuzzy approach to FMEA. Insights from an Indian case study. Benchmark. Int. J. 25(8), 2660–2687 (2018). https://doi.org/10.1108/BIJ-04-2017-0074

  23. Yu, M., Goh, M.: A multi-objective approach to supply chain visibility and risk. Eur. J. Oper. Res. 233(1), 125–130 (2014). https://doi.org/10.1016/j.ejor.2013.08.037

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, G., Liu, Y.: Designing fuzzy supply chain network problem by mean-risk optimization method. J. Intell. Manuf. 26(3), 447–458 (2015). https://doi.org/10.1007/s10845-013-0801-7

    Article  Google Scholar 

  25. Mostafaeipour, A., Qolipour, M., Eslami, H.: Implementing fuzzy rank function model for a new supply chain risk management. J. Supercomput. 73, 3586–3602 (2017). https://doi.org/10.1007/s11227-017-1960-7

    Article  Google Scholar 

  26. Guo, Y., Meng, X., Wang, D., Meng, T., Liu, S., He, R.: Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model. J. Nat. Gas Sci. Eng. 33, 18–29 (2016). https://doi.org/10.1016/j.jngse.2016.04.052

    Article  Google Scholar 

  27. Kutlu, A., Ekmekçioglu, M.: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst. Appl. 39(1), 61–67 (2012). https://doi.org/10.1016/j.eswa.2011.06.044

    Article  Google Scholar 

  28. Chan, F., Kumar, N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 35(4), 417–431 (2007). https://doi.org/10.1016/j.omega.2005.08.004

    Article  Google Scholar 

  29. Wang, X., Chan, H., Yee, R., Diaz-Rainey, I.: A Two-stage fuzzy-AHP model for risk assessment of implementing green initiatives in the fashion supply chain. Int. J. Product. Econ. 135(2), 595–606 (2012). https://doi.org/10.1016/j.ijpe.2011.03.021

    Article  Google Scholar 

  30. Viswanadham, N., Samvedi, A.: Supplier selection based on supply chain ecosystem, performance and risk criteria. Int. J. Product. Res. 51(21), 6484–6498 (2013). https://doi.org/10.1080/00207543.2013.825056

    Article  Google Scholar 

  31. Ganguly, K., Guin, K.: A fuzzy AHP approach for inbound supply risk assess-ment, Benchmark. Int. J. 20(1), 129–146 (2013). https://doi.org/10.1108/14635771311299524

  32. Gold, S., Awasthi, A.: Sustainable global supplier selection extended towards sustainability risks from (1+n)th tier suppliers using fuzzy AHP based approach. IFAC-PapersOnLine 48(3), 966–971 (2015). https://doi.org/10.1016/j.ifacol.2015.06.208

    Article  Google Scholar 

  33. Zimmer, K., Fröhling, M., Breun, P., Schultmann, F.: Assessing social risks of global supply chains: a quantitative analytical approach and its application to supplier selection in the German automotive industry. J. Cleaner Product. 149, 96–109 (2017). https://doi.org/10.1016/j.jclepro.2017.02.041

    Article  Google Scholar 

  34. Ganguly, K., Kumar, G.: Supply chain risk assessment: a fuzzy AHP approach. Oper. Supply Chain Manage. Int. J. 12(1), 1–13 (2019). https://doi.org/10.31387/oscm0360217

    Article  Google Scholar 

  35. Jiang, B., Li, J., Shen, S.: Supply chain risk assessment and control of port enter-prises: Qingdao port as case study. Asian J. Shipp. Logistics 34(3), 198–208 (2018). https://doi.org/10.1016/j.ajsl.2018.09.003

    Article  Google Scholar 

  36. Xiao, Z., Chen, W., Li, L.: An integrated FCM and fuzzy soft set for supplier selection problem based on risk evaluation. Appl. Math. Modell. 36(4), 1444–1454 (2012). https://doi.org/10.1016/j.apm.2011.09.038

    Article  MathSciNet  MATH  Google Scholar 

  37. Hung, S.: Activity-based divergent supply chain planning for competitive Ad-vantage in the risky global environment: a DEMATEL-ANP fuzzy goal programming approach. Expert Systs. Appl. 38(8), 9053–9062 (2011). https://doi.org/10.1016/j.eswa.2010.09.024

    Article  Google Scholar 

  38. Wu, H.: Fuzzy reliability estimation using Bayesian approach. Comput. Indus. Eng. 46(3), 467–493 (2004). https://doi.org/10.1016/j.cie.2004.01.009

    Article  Google Scholar 

  39. Wu, H.: Fuzzy bayesian system reliability assessment based on exponential distribution. Appl. Math. Modell. 30(6), 509–530 (2006). https://doi.org/10.1016/j.apm.2005.05.014

    Article  MATH  Google Scholar 

  40. Ren, J., Jenkinson, I., Wang, J., Xu, D., Yang, J.: An offshore risk analysis method us-ing fuzzy bayesian network. J. Offshore Mech. Arct. Eng. 131(4), 041101 (2009). https://doi.org/10.1115/1.3124123

    Article  Google Scholar 

  41. Görkemli, L., Ulusoy, S.: Fuzzy Bayesian reliability and availability analysis of production systems. Comput. Indus. Eng. 59(4), 690–696 (2010). https://doi.org/10.1016/j.cie.2010.07.020

    Article  Google Scholar 

  42. Yazdi, M., Kabir, S.: A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Protect. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015

  43. Yang, Z., Bonsall, S., Wang, J.: Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans. Reliab. 57(3), 517–528 (2008). https://doi.org/10.1109/TR.2008.928208

    Article  Google Scholar 

  44. Wang, Y., Chin, K., Poon, G., Yang, J.: Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Syst. Appl. 36(2), 1195–1207 (2009). https://doi.org/10.1016/j.eswa.2007.11.028

    Article  Google Scholar 

  45. Shahiar, A., Sadiq, R., Tesfamariam, S.: Risk analysis for oil and gas pipelines: a sus-tainability assessment approach using fuzzy based bow-tie analysis. J. Loss Prev. Process Indus. 25(3), 505–523 (2012). https://doi.org/10.1016/j.jlp.2011.12.007

    Article  Google Scholar 

  46. Ferdous, R., Khan, F., Sadiq, R., Amyotte, P., Veitch, B.: Analyzing system safety and risks under uncertainty using a bow-tie diagram: an innovative approach. Process Saf. Environ. Protect. 91(1–2), 1–18 (2013). https://doi.org/10.1016/j.psep.2011.08.010

    Article  Google Scholar 

  47. Aqlan, F., Mustafa, E.: Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Indus. 29(1), 39–48 (2014). https://doi.org/10.1016/j.jlp.2014.01.006

    Article  Google Scholar 

  48. Azadeh, A., Alem, S.: A Flexible deterministic, stochastic and fuzzy data envelopment analysis approach for supply chain risk and vendor selection problem: simulation analysis. Expert Syst. Appl. 37(12), 7438–7448 (2010). https://doi.org/10.1016/j.eswa.2010.04.022

    Article  Google Scholar 

  49. Wu, D., Olson, D.: Enterprise risk management: a DEA VaR approach in vendor selection. Int. J. Product. Res. 48(6), 4919–4932 (2010). https://doi.org/10.1080/00207540903051684

    Article  MATH  Google Scholar 

  50. Yadav, D., Barve, A.: Segmenting critical success factors of humanitarian supply chains using fuzzy DEMATEL. Benchmark. Int. J. 25(2), 400–425 (2018). https://doi.org/10.1108/BIJ-10-2016-0154

  51. Lin, K., Tseng, M., Pai, P.: Sustainable supply chain management using approximate fuzzy DEMATEL method. Resour. Conserv. Recycl. 128, 134–142 (2018). https://doi.org/10.1016/j.resconrec.2016.11.017

    Article  Google Scholar 

  52. Bidder, O., Arandjelović, O., Almutairi, F., Shepard, E., Lambertucci, S., Qasem, L., Wilson, R: A risky business or a safe BET? A fuzzy set event tree for estimating hazard in biotelemetry studies. Anim Behav 93, 143–150 (2014).https://doi.org/10.1016/j.anbehav.2014.04.025

  53. Javidi, M., Abdolhamidzadeh, B., Reniers, G., Rashtchian, D.: A multivariable model for estimation of vapor cloud explosion occurrence possibility based on a fuzzy logic approach for flammable materials. J. Loss Prev. Process Indus. 33, 140–150 (2015). https://doi.org/10.1016/j.jlp.2014.11.003

    Article  Google Scholar 

  54. Wang, Y., Xie, M., Ng, K., Meng, Y.: Quantitative risk analysis model of inte-grating fuzzy fault tree with Bayesian network. In: International Conference on Intelli-gence and Security Informatics (ISI), pp. 267–271. IEEE, Beijing (2011). https://doi.org/10.1109/ISI.2011.5984095

  55. Braglia, M., Frosolini, M., Montanari, R.: Fuzzy criticality assessment model for failure modes and effects analysis. Int. J. Qual. Reliab. Manage. 20(4), 503–524 (2003). https://doi.org/10.1108/02656710310468687

    Article  Google Scholar 

  56. Pillay, A., Wang, J.: Modified failure mode and effects analysis using approximate reasoning. Reliab. Eng. Syst. Saf. 79(1), 69–85 (2003). https://doi.org/10.1016/S0951-8320(02)00179-5

    Article  Google Scholar 

  57. Sharma, R., Kumar, D., Kumar, P.: Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling. Int. J. Qual. Reliab. Manage. 22(9), 986–1004 (2005). https://doi.org/10.1108/02656710510625248

    Article  Google Scholar 

  58. Meng, K., Peng, C.: Fuzzy FMEA with a guided rules reduction system for prioritization of failures. Int. J. Qual. Reliab. Manage. 23(8), 1047–1066 (2006). https://doi.org/10.1108/02656710610688202

    Article  Google Scholar 

  59. Liu, H., Liu, L., Bian, Q., Lin, Q., Dong, N., Xu, P.: Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Syst. Appl. 38(4), 4403–4415 (2011). https://doi.org/10.1016/j.eswa.2010.09.110

    Article  Google Scholar 

  60. Chaudhuri, A., Mohanty, B., Singh, K.: Supply chain risk assessment during new product development: a group decision making approach using numeric and linguistic data. Int. J. Product. Res. 51(10), 2790–2804 (2012). https://doi.org/10.1080/00207543.2012.654922

    Article  Google Scholar 

  61. Rohmah, D., Dania, W., Dewi, I.: Risk measurement of supply chain organic rice product using fuzzy failure mode effect analysis in MUTOS Seloliman Trawas Mojokerto. Agric. Agric. Sci. Proc. 3, 108–113 (2015). https://doi.org/10.1016/j.aaspro.2015.01.022

    Article  Google Scholar 

  62. Aviso, K., Amalin, D., Promentilla, Angelo, M., Santos, J., Yu, K., Tan, R.: Risk assessment of the economic impacts of climate change on the implementation of mandatory biodiesel blending programs: A fuzzy inoperability input-output modeling (IIM) approach. Biomass Bioenergy 83, 436–447 (2015). https://doi.org/10.1016/j.biombioe.2015.10.011

  63. Niknejad, A., Petrovic, D.: Analysis of impact of uncertainty in global production networks’ parameters. Comput. Indus. Eng. 111, 228–238 (2017). https://doi.org/10.1016/j.cie.2017.07.011

    Article  Google Scholar 

  64. Moeinzadeh, P., Hajfathaliha, A.: A combined fuzzy decision making approach to supply chain risk assessment. World Acad. Sci. Eng. Technol. 60, 519–535 (2009). https://doi.org/10.5281/zenodo.1060613

    Article  Google Scholar 

  65. Haleh, H., Hamidi, A.: A fuzzy MCDM model for allocating orders to suppliers in a supply chain under uncertainty over a multi-period time horizon. Expert Syst. Appl. 38(8), 9076–9083 (2011). https://doi.org/10.1016/j.eswa.2010.11.064

    Article  Google Scholar 

  66. Xia, D., Chen, B.: A comprehensive decision-making model for risk management of supply chain. Expert Syst. Appl. 38(5), 4957–4966 (2011). https://doi.org/10.1016/j.eswa.2010.09.156

    Article  Google Scholar 

  67. Khemiri, R., Elbedoui-Maktouf, K., Grabot, B., Zouari, B.: A fuzzy multi-criteria decisión making approach for managing performance and risk in integrated procurement–production planning. Int. J. Product. Res. 55(18), 5305–5329 (2017). https://doi.org/10.1080/00207543.2017.1308575

    Article  Google Scholar 

  68. Wang, Z., Ren, J., Goodsite, M., Xu, G.: Waste-to-energy, municipal solid waste treatment, and best available technology: comprehensive evaluation by an interval-valued fuzzy multicriterio decision making method. J. Cleaner Product. 172, 887–899 (2018). https://doi.org/10.1016/j.jclepro.2017.10.184

    Article  Google Scholar 

  69. Tabrizi, B., Razmi, J.: Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. J. Manuf. Syst. 32(2), 295–307 (2013). https://doi.org/10.1016/j.jmsy.2012.12.001

    Article  Google Scholar 

  70. Kumar, M., Vrat, P., Shankar, R.: A fuzzy programming approach for vendor selection problem in a supply chain. Int. J. Product. Econ. 101(2), 273–285 (2006). https://doi.org/10.1016/j.ijpe.2005.01.005

    Article  Google Scholar 

  71. Ji, G., Zhu, C.: A study on emergency supply chain and risk based on urgent relief service in disasters. Syst. Eng. Proc. 5, 313–325 (2012). https://doi.org/10.1016/j.sepro.2012.04.049

    Article  Google Scholar 

  72. Zhou, J., Reniers, G., Zhang, L.: A weighted fuzzy Petri-net based approach for security risk assessment in the chemical industry. Chem. Eng. Sci. 174, 136–145 (2017). https://doi.org/10.1016/j.ces.2017.09.002

    Article  Google Scholar 

  73. Liu, H.: The extension of fuzzy QFD: from product planning to part deployment. Expert Syst. Appl. 36(8), 11131–11144 (2009). https://doi.org/10.1016/j.eswa.2009.02.070

    Article  Google Scholar 

  74. Sahu, A., Sahu, N., Sahu, A.K.: Application of integrated TOPSIS in ASC index: partners benchmarking perspective. Benchmark. Int. J. 23(3), 540–563 (2016). https://doi.org/10.1108/BIJ-03-2014-0021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Díaz-Curbelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz-Curbelo, A., Gento Municio, Á.M., Espin-Andrade, R.A. (2021). Fuzzy Logic-Based Approaches in Supply Chain Risk Management: A Review. In: Pedrycz, W., Martínez, L., Espin-Andrade, R.A., Rivera, G., Marx Gómez, J. (eds) Computational Intelligence for Business Analytics. Studies in Computational Intelligence, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-73819-8_5

Download citation

Publish with us

Policies and ethics