Skip to main content

Modulation Formats

  • Chapter
  • First Online:
THz Communications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 234))

  • 2476 Accesses

Abstract

Modulation is essential to convey information through a communication system. This chapter gives an overview of the modulation schemes and their use to date in THz systems. The choice of a modulation scheme is a trade-off of factors such as noise, RF channel, cost/complexity, and component technologies. THz systems fall at a technology cusp between optical and RF systems. Spectral efficiency is important at lower frequencies where the spectrum is congested, but THz frequency bands are currently underused, and technical challenges like power, high-channel losses, and oscillator-phase stability dominate the design choices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherry, S. (July 2004). Edholm’s law of bandwidth. IEEE Spectrum, 41(7), 58–60.

    Article  Google Scholar 

  2. Mokole, E. L., et al. Spectrum use, congestion, issues, and research areas at radio-frequencies (Radar, Sonar & Navigation, 2018). In Radar and communication spectrum sharing (Chap. 5, pp. 135–173). https://digital-library.theiet.org/content/books/10.1049/sbra515e_ch5

  3. Siles, G. A., & Riera, J. M. (2009, January). An introduction to THz atmospheric propagation and passive remote sensing applications. In Conference: XXIV Simposium Nacional URSI, Santander, Espana.

    Google Scholar 

  4. Friis, H. T. (1946, May). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

    Article  Google Scholar 

  5. Rey, S., & Kuerner, T. (2015, September). Why/when is AWGN a suitable channel model for wireless front-/backhaul?. IEEE 802.15-15-15-15-0681-00-003d.

    Google Scholar 

  6. Rumney, M. (2013, July). LTE and the evolution to 4G wireless – Design and measurement challenges, 2nd ed., CH2. Wiley, ISBN:9781119962571.

    Google Scholar 

  7. Kim, Y., et al. (2019, June). New Radio (NR) and its evolution toward 5G-advanced. IEEE Wireless Communications, 26(3), 2–7.

    Article  Google Scholar 

  8. Li, Y. G., & Stuber, G. L. (Eds.). (2006). Orthogonal frequency division multiplexing for wireless communications. Springer. ISBN 978-0-387-29095-9.

    Google Scholar 

  9. Cho, Y. S., et al. (2010). Introduction to OFDM. In MIMO-OFDM wireless communications with MATLAB®. IEEE, pp. 111–151.

    Google Scholar 

  10. Arthur, J. K., et al. (2019). Comparative analysis of orthogonal frequency division modulation and filter bank-based multicarrier modulation. In 2019 International Conference. on Communications, Signal Processing and Networks (ICCSPN), Accra, Ghana (pp. 1–10).

    Google Scholar 

  11. Shannon, C. E. (1948, July, October). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423, 623–656.

    Google Scholar 

  12. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  13. Shafik, R. A., et al. (2006, November). On the error vector magnitude as a performance metric and comparative analysis. In 2nd International Conference on Emerging Technologies, Peshawar, Pakistan (pp. 27–31).

    Google Scholar 

  14. Mahmoud, H. A., & Arslan, H. (2009). Error vector magnitude to SNR conversion for nondata-aided receivers. IEEE Transactions on Wireless Communications, 8(5), 2694–2704.

    Article  Google Scholar 

  15. Hudlička, M., et al. (2016). BER estimation from EVM for QPSK and 16-QAM coherent optical systems. In 2016 IEEE 6th International Conference on Photonics (ICP), Kuching (pp. 1–3).

    Google Scholar 

  16. 6.5.2 Error Vector Magnitude, ETSI TS 136 104 V8.3.0 (2008–2011). LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 8.3.0 Release 8), p. 17.

    Google Scholar 

  17. Humphreys, D. A., & Miall, J. (2013, June). Traceable measurement of source and receiver EVM using a real-time oscilloscope. IEEE Transactions on Instrumentation and Measurements, 62(6), 1413–1416.

    Article  ADS  Google Scholar 

  18. Remley, K. A., et al. (2015, May). Millimeter-wave modulated-signal and error-vector-magnitude measurement with uncertainty. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1710–1720.

    Article  ADS  Google Scholar 

  19. Jargon, J. A., et al. (2012). Establishing traceability of an electronic calibration unit using the NIST microwave uncertainty framework. In 79th ARFTG Microwave Measurement Conference, Montreal, QC (pp. 1–5).

    Google Scholar 

  20. P1765 – trial-use recommended practice for estimating the uncertainty in error vector magnitude of measured digitally modulated signals for wireless communications. https://standards.ieee.org/project/1765.html

  21. Song, H. J., et al. (2009, October). 8 Gbit/s wireless data transmission at 250 GHz. Electronics Letters, 45(22), 1121–1122.

    Article  ADS  Google Scholar 

  22. Song, H. J., et al. (2010, October). Terahertz wireless communication link at 300 GHz. In IEEE topical meeting Microwave Photonics (MWP) (pp. 42–45).

    Google Scholar 

  23. Kallfass, I., et al. (2011, November). All active MMIC-based wireless communication at 220 GHz. IEEE Transactions on Terahertz Science and Technology, 1(2), 477–487.

    Article  ADS  Google Scholar 

  24. Nagatsuma, T., et al. (2013). Terahertz wireless communications based on photonics technologies. Optics Express, 21(20), 23736–23747.

    Article  ADS  Google Scholar 

  25. Nagatsuma, T., et al. (2016). 300-GHz-band wireless transmission at 50 Gbit/s over 100 meters. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen (pp. 1–2).

    Google Scholar 

  26. Ito, H., et al. (2004). Continuous THz-wave generation using uni-travelling-carrier photodiode. In 15th International Symposium on Space Terahertz Technology, April 27–29, Northampton, MA, USA (pp. 143–150).

    Google Scholar 

  27. High power uni-travelling carrier photodiodes for THz wireless communications. UK Research and Innovation project 2259136, Oct 2015 – Feb. 2021. https://gtr.ukri.org/projects?ref=studentship-2259136#/tabOverview

  28. Mohammad, A. W., et al. (2018). Optically pumped mixing in photonically integrated uni-travelling carrier photodiode. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya (pp. 1–2).

    Google Scholar 

  29. Wang, C., et al. (2014, January). 0.34-THz wireless link based on high-order modulation for future wireless local area network applications. IEEE Transactions on Terahertz Science and Technology, 4(1), 75–85.

    Article  ADS  Google Scholar 

  30. Katayama, K., et al. (2016, December). A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over six channels. IEEE Journal of Solid-State Circuits, 51(12), 3037–3048.

    Article  ADS  Google Scholar 

  31. Hermelo, M. F., et al. (2017). Spectral efficient 64-QAM-OFDM terahertz communication link. Optics Express, 25, 19360–19370.

    Article  ADS  Google Scholar 

  32. Hu, S., et al. (2012, November). A SiGe BiCMOS transmitter/receiver chipset with on-chip SIW antennas for terahertz applications. IEEE Journal of Solid-State Circuits, 47(11), 2654–2664.

    Article  ADS  Google Scholar 

  33. Chung, T. J., & Lee, W.-H. (2013, June). 10-Gbit/s wireless communication system at 300 GHz. ETRI Journal, 35(3), 386–396.

    Article  Google Scholar 

  34. Song, H., et al. (2014, March). 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz. IEEE Transactions on Microwave Theory and Techniques, 62(3), 600–609.

    Article  ADS  MathSciNet  Google Scholar 

  35. Koenig, S., et al. (2014, October). Wireless sub-THz communication system with high data rate enabled by RF photonics and active MMICtechnology. In Proceedings of the IEEE Photonics Conference (pp. 414–415).

    Google Scholar 

  36. Kallfass, I., et al. (Feb. 2015). 64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency. Journal of Infrared, Millimeter, and Terahertz Waves, 36(2), 221–233.

    Article  Google Scholar 

  37. Katayama, K., et al. (2016, May). CMOS 300-GHz 64-QAM transmitter. In IEEE MTT-S International Microwave Symposium Digest (pp. 1–4).

    Google Scholar 

  38. Yu, X., et al. (2016, November). 400-GHz wireless transmission of 60-Gb/s Nyquist-QPSK signals using UTC-PD and heterodyne mixer. IEEE Transactions on Terahertz Science and Technology, 6(6), 765–770.

    Article  ADS  Google Scholar 

  39. Jia, S., et al. (2016). THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band. Optics Express, 24, 23777–23783.

    Article  ADS  Google Scholar 

  40. Song, H., et al. (2016). Demonstration of 20-Gbps wireless data transmission at 300 GHz for KIOSK instant data downloading applications with InP MMICs. In 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA (pp. 1–4).

    Google Scholar 

  41. Chinni, V. K., et al. (2018). Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3 d wireless links in the 300 GHz band. Electronics Letters, 54(10), 638–640.

    Article  ADS  Google Scholar 

  42. Jia, S., et al. (2018, January). 0.4 THz photonic-wireless link with 106 Gbps single channel bitrate. Journal of Lightwave Technology, 36(2), 610–616.

    Article  ADS  MathSciNet  Google Scholar 

  43. Lee, S., et al. (2019, February). 9.5 an 80 Gb/s 300GHz-band single-chip CMOS transceiver. In Proceedings of the IEEE international solid-state circuits conference.

    Google Scholar 

  44. Hamada, H., et al. (2019). 300-GHz 120-Gb/s wireless transceiver with high-output-power and high-gain power amplifier based on 80-nm InP-HEMT technology. In 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA (pp. 1–4).

    Google Scholar 

  45. Dan, I., et al. (2020, January). A terahertz wireless communication link using a superheterodyne approach. IEEE Transactions on Terahertz Science and Technology, 10(1), 32–43.

    Article  ADS  MathSciNet  Google Scholar 

  46. Jia, S., et al. (2020, September 1). 2 × 300 Gbit/s Line Rate PS-64QAM-OFDM THz Photonic-Wireless Transmission. Journal of Lightwave Technology, 38(17), 4715–4721.

    Article  ADS  Google Scholar 

  47. Goodwins, R. 5G New Radio: The technical background,” ZDnet, February 1, 2019. https://www.zdnet.com/article/5g-new-radio-the-technical-background/

  48. Lucky, R., & Hancock, J. (1962, June). On the optimum performance of m-ary systems having two degrees of freedom. IRE Transactions on Communications, CS-10, 185–192.

    Article  Google Scholar 

  49. Foschini, G., et al. (1974, January). Optimization of two-dimensional signal constellations in the presence of Gaussian noise. IEEE Transactions on Communications., 22(1), 28–38.

    Article  Google Scholar 

  50. Hanzo, L., et al. (2004). Quadrature amplitude modulation: From basics to adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems (2nd edn.). Wiley/IEEE Press. ISBN 0-470-09468.

    Google Scholar 

  51. Dan, I., et al. (2017). Impact of modulation type and baud rate on a 300GHz fixed wireless link. In 2017 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ (pp. 86–89).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Humphreys .

Editor information

Editors and Affiliations

Glossary

Glossary

5G:

Fifth-generation cellular radio system

AWGN:

Added white Gaussian noise

ASK:

Amplitude shift keying

APSK:

Amplitude and phase-shift keying

EVM:

Error vector magnitude

FEC:

Forward error correction

LTE:

Long-term evolution (fourth-generation cellular radio system)

OFDMA:

Orthogonal frequency-domain multiple access

OOK:

On-off keying

OTA:

Over the air (testing)

M-QAM:

Quadrature amplitude modulation for an arbitrary number of constellation points (e.g., 16 QAM)

SNR:

Signal-to-noise (power) ratio, normally expressed in decibels

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humphreys, D.A. (2022). Modulation Formats. In: Kürner, T., Mittleman, D.M., Nagatsuma, T. (eds) THz Communications. Springer Series in Optical Sciences, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-73738-2_29

Download citation

Publish with us

Policies and ethics