Skip to main content

Comparative Analysis and Validation of Different Modulation Strategies for an Isolated DC-DC Dual Active Bridge Converter

  • Conference paper
  • First Online:
Sustainable Energy for Smart Cities (SESC 2020)

Abstract

This paper presents a comparative analysis of different modulation techniques that can be applied to a dual active bridge (DAB) converter, validating and analyzing its performance with the realization of computational simulations.

A DAB converter is an isolated dc-dc topology with great applicability in the most diverse branches of power electronics, as is the case of energy storage systems, solid state transformers, power electronic traction transformers, and, more recently, dc or hybrid microgrids. In this sense, several strategies have been studied to mitigate circulating currents, expand the zero voltage switching operating range, and reduce reactive power, as well as semiconductor stress. One of the possible solutions to increase the efficiency of this dc-dc converter is to adopt specific modulation techniques, however, it is necessary to assess which one has a better cost-benefit ratio. Thus, this paper presents a comparative analysis between: (i) Duty-cycle modulation; (ii) Single phase shift (SPS); (iii) Dual phase shift (DPS); (iv) Extended phase shift (EPS); (v) Triple phase shift (TPS). Specifically, this comparative analysis aims to investigate the performance of a DAB converter when controlled by the aforementioned strategies and operating with a nominal power of 3.6 kW, a switching frequency of 100 kHz, and a transformation ratio of 2:1. Considering these operation parameters and by analyzing the obtained simulation results, it was shown that only SPS, DPS, and TPS modulation techniques are considered suitable for this particular case. Duty-cycle modulation presents time limitations during the power transfer, whilst EPS is more suitable for dynamic medium/high power applications since it is capable of transferring a certain power value in a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H.: A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27(1), 63–73 (1991). https://doi.org/10.1109/28.67533

    Article  Google Scholar 

  2. Mueller, J.A., Kimball, J.W.: Modeling dual active bridge converters in DC distribution systems. IEEE Trans. Power Electron. 34(6), 5867–5879 (2019). https://doi.org/10.1109/TPEL.2018.2867434

    Article  Google Scholar 

  3. Dao, N.D., Lee, D.C., Phan, Q.D.: High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations. IEEE Trans. Power Electron. 35(10), 10455–10465 (2020). https://doi.org/10.1109/TPEL.2020.2975124

    Article  Google Scholar 

  4. Wang, D., Nahid-Mobarakeh, B., Emadi, A.: Second harmonic current reduction for a battery-driven grid interface with three-phase dual active bridge DC-DC converter. IEEE Trans. Industr. Electron. 66(11), 9056–9064 (2019). https://doi.org/10.1109/TIE.2019.2899563

    Article  Google Scholar 

  5. Sun, Y., Gao, Z., Fu, C., Wu, C., Chen, Z.: A hybrid modular DC solid-state transformer combining high efficiency and control flexibility. IEEE Trans. Power Electron. 35(4), 3434–3449 (2020). https://doi.org/10.1109/TPEL.2019.2935029

    Article  Google Scholar 

  6. Liu, J., Yang, J., Zhang, J., Nan, Z., Zheng, Q.: Voltage balance control based on dual active bridge DC/DC converters in a power electronic traction transformer. IEEE Trans. Power Electron. 33(2), 1696–1714 (2018). https://doi.org/10.1109/TPEL.2017.2679489

    Article  Google Scholar 

  7. Kwak, B., Kim, M., Kim, J.: Inrush current reduction technology of DAB converter for low-voltage battery systems and DC bus connections in DC microgrids. IET Power Electron. 13(8), 1528–1536 (2020). https://doi.org/10.1049/iet-pel.2019.0506

    Article  Google Scholar 

  8. Hu, J., Joebges, P., Pasupuleti, G.C., Averous, N.R., de Doncker, R.W.: A maximum-output-power-point-tracking-controlled dual-active bridge converter for photovoltaic energy integration into MVDC grids. IEEE Trans. Energy Convers. 34(1), 170–180 (2019). https://doi.org/10.1109/TEC.2018.2874936

    Article  Google Scholar 

  9. Chakraborty, S., Chattopadhyay, S.: Fully ZVS, minimum RMS current operation of the dual-active half-bridge converter using closed-loop three-degree-of-freedom control. IEEE Trans. Power Electron. 33(12), 10188–10199 (2018). https://doi.org/10.1109/TPEL.2018.2811640

    Article  Google Scholar 

  10. Roggia, L., Costa, P.F.S.: Comparative analysis between integrated full-bridge-forward and dual active bridge DC–DC converters. Electron. Lett. 54(4), 231–233 (2018). https://doi.org/10.1049/el.2017.3326

    Article  Google Scholar 

  11. Liu, P., Chen, C., Duan, S.: An optimized modulation strategy for the three-level DAB converter with five control degrees of freedom. IEEE Trans. Industr. Electron. 67(1), 254–264 (2020). https://doi.org/10.1109/TIE.2019.2896209

    Article  Google Scholar 

  12. Xuan, Y., Yang, X., Chen, W., Liu, T., Hao, X.: A novel NPC dual-active-bridge converter with blocking capacitor for energy storage system. IEEE Trans. Power Electron. 34(11), 10635–10649 (2019). https://doi.org/10.1109/TPEL.2019.2898454

    Article  Google Scholar 

  13. Chan, Y.P., Yaqoob, M., Wong, C.S., Loo, K.H.: Realization of high-efficiency dual-active-bridge converter with reconfigurable multilevel modulation scheme. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1178–1192 (2020). https://doi.org/10.1109/JESTPE.2019.2926070

    Article  Google Scholar 

  14. Wu, J., Li, Y., Sun, X., Liu, F.: A new dual-bridge series resonant DC-DC converter with dual tank. IEEE Trans. Power Electron. 33(5), 3884–3897 (2018). https://doi.org/10.1109/TPEL.2017.2723640

    Article  Google Scholar 

  15. Rolak, M., Sobol, C., Malinowski, M., Stynski, S.: Efficiency optimization of two dual active bridge converters operating in parallel. IEEE Trans. Power Electron. 35(6), 6523–6532 (2020). https://doi.org/10.1109/TPEL.2019.2951833

    Article  Google Scholar 

  16. Jeung, Y.C., Lee, D.C.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937–6946 (2019). https://doi.org/10.1109/TPEL.2018.2873834

    Article  Google Scholar 

  17. Li, X., Wu, F., Yang, G., Liu, H., Meng, T.: Dual-period-decoupled space vector phase-shifted modulation for DAB-based three-phase single-stage AC-DC converter. IEEE Trans. Power Electron. 35(6), 6447–6457 (2020). https://doi.org/10.1109/TPEL.2019.2950059

    Article  Google Scholar 

  18. Takagi, K., Fujita, H.: Dynamic control and performance of a dual-active-bridge DC-DC converter. IEEE Trans. Power Electron. 33(9), 7858–7866 (2018). https://doi.org/10.1109/TPEL.2017.2773267

    Article  Google Scholar 

  19. Xia, P., Shi, H., Wen, H., Bu, Q., Hu, Y., Yang, Y.: Robust LMI-LQR control for dual-active-bridge DC-DC converters with high parameter uncertainties. IEEE Trans. Transp. Electrif. 6(1), 131–145 (2020). https://doi.org/10.1109/TTE.2020.2975313

    Article  Google Scholar 

  20. Shi, H., Wen, H., Chen, J., Hu, Y., Jiang, L., Chen, G.: Minimum-reactive-power scheme of dual-active-bridge DC-DC converter with three-level modulated phase-shift control. IEEE Trans. Ind. Appl. 53(6), 5573–5586 (2017). https://doi.org/10.1109/TIA.2017.2729417

    Article  Google Scholar 

  21. Karthikeyan, V., Gupta, R.: FRS-DAB converter for elimination of circulation power flow at input and output ends. IEEE Trans. Industr. Electron. 65(3), 2135–2144 (2018). https://doi.org/10.1109/TIE.2017.2740853

    Article  Google Scholar 

  22. Vazquez, N., Liserre, M.: Peak current control and feed-forward compensation of a DAB converter. IEEE Trans. Industr. Electron. 67(10), 8381–8391 (2020). https://doi.org/10.1109/TIE.2019.2949523

    Article  Google Scholar 

  23. Hebala, O.M., Aboushady, A.A., Ahmed, K.H., Abdelsalam, I.: Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization. IEEE Trans. Industr. Electron. 66(6), 4468–4478 (2019). https://doi.org/10.1109/TIE.2018.2860535

    Article  Google Scholar 

  24. Yaqoob, M., Loo, K.H., Lai, Y.M.: A four-degrees-of-freedom modulation strategy for dual-active-bridge series-resonant converter designed for total loss minimization. IEEE Trans. Power Electron. 34(2), 1065–1081 (2019). https://doi.org/10.1109/TPEL.2018.2865969

    Article  Google Scholar 

  25. Liu, P., Duan, S.: A hybrid modulation strategy providing lower inductor current for the DAB converter with the aid of DC blocking capacitors. IEEE Trans. Power Electron. 35(4), 4309–4320 (2020). https://doi.org/10.1109/TPEL.2019.2937161

    Article  Google Scholar 

  26. Qin, Z., Shen, Y., Loh, P.C., Wang, H., Blaabjerg, F.: A dual active bridge converter with an extended high-efficiency range by DC blocking capacitor voltage control. IEEE Trans. Power Electron. 33(7), 5949–5966 (2018). https://doi.org/10.1109/TPEL.2017.2746518

    Article  Google Scholar 

  27. Xu, G., Sha, D., Xu, Y., Liao, X.: Hybrid-bridge-based DAB converter with voltage match control for wide voltage conversion gain application. IEEE Trans. Power Electron. 33(2), 1378–1388 (2018). https://doi.org/10.1109/TPEL.2017.2678524

    Article  Google Scholar 

  28. Xiao, Y., Zhang, Z., Andersen, M.A.E., Sun, K.: Impact on ZVS operation by splitting inductance to both sides of transformer for 1-MHz GaN based DAB converter. IEEE Trans. Power Electron. 35(11), 11988–12002 (2020). https://doi.org/10.1109/TPEL.2020.2988638

    Article  Google Scholar 

  29. Dung, N.A., Chiu, H.J., Lin, J.Y., Hsieh, Y.C., Liu, Y.C.: Efficiency optimisation of ZVS isolated bidirectional DAB converters. IET Power Electron. 11(8), 1–8 (2018). https://doi.org/10.1049/iet-pel.2017.0723

    Article  Google Scholar 

  30. Garcia-Bediaga, A., Villar, I., Rujas, A., Mir, L.: DAB modulation schema with extended ZVS region for applications with wide input/output voltage. IET Power Electron. 11(13), 1–8 (2018). https://doi.org/10.1049/iet-pel.2018.5332

    Article  Google Scholar 

  31. Xu, G., Sha, D., Xu, Y., Liao, X.: Dual-transformer-based DAB converter with wide ZVS range for wide voltage conversion gain application. IEEE Trans. Industr. Electron. 65(4), 3306–3316 (2018). https://doi.org/10.1109/TIE.2017.2756601

    Article  Google Scholar 

  32. Shi, H., et al.: Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control. IEEE Trans. Ind. Appl. 54(4), 3483–3496 (2018). https://doi.org/10.1109/TIA.2018.2819120

    Article  Google Scholar 

  33. Shen, K., et al.: ZVS control strategy of dual active bridge DC/DC converter with triple-phase-shift modulation considering RMS current optimization. J. Eng. 2019(18), 4708–4712 (2019). https://doi.org/10.1049/joe.2018.9341

    Article  Google Scholar 

  34. Calderon, C., et al.: General analysis of switching modes in a dual active bridge with triple phase shift modulation. Energies 11(9), 2419 (2018). https://doi.org/10.3390/en11092419

    Article  Google Scholar 

  35. Bu, Q., Wen, H., Wen, J., Hu, Y., Du, Y.: Transient DC bias elimination of dual-active-bridge DC-DC converter with improved triple-phase-shift control. IEEE Trans. Industr. Electron. 67(10), 8587–8598 (2020). https://doi.org/10.1109/TIE.2019.2947809

    Article  Google Scholar 

  36. Dai, T., et al.: Research on transient DC bias analysis and suppression in EPS DAB DC-DC converter. IEEE Access 8, 61421–61432 (2020). https://doi.org/10.1109/ACCESS.2020.2983090

    Article  Google Scholar 

  37. Wu, F., Feng, F., Gooi, H.B.: Cooperative triple-phase-shift control for isolated DAB DC-DC converter to improve current characteristics. IEEE Trans. Industr. Electron. 66(9), 7022–7031 (2019). https://doi.org/10.1109/TIE.2018.2877115

    Article  Google Scholar 

  38. Luo, S., Wu, F., Wang, G.: Improved TPS control for DAB DC-DC converter to eliminate dual-side flow back currents. IET Power Electron. 13(1), 32–39 (2020). https://doi.org/10.1049/iet-pel.2019.0562

    Article  Google Scholar 

  39. Liu, X., et al.: Novel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control. IEEE Trans. Power Electron. 32(5), 4095–4106 (2017). https://doi.org/10.1109/TPEL.2016.2593939

    Article  Google Scholar 

  40. Hou, N., Song, W., Li, Y., Zhu, Y., Zhu, Y.: A comprehensive optimization control of dual-active-bridge DC-DC converters based on unified-phase-shift and power-balancing scheme. IEEE Trans. Power Electron. 34(1), 826–839 (2018). https://doi.org/10.1109/TPEL.2018.2813995

    Article  Google Scholar 

  41. Fritz, N., Rashed, M., Bozhko, S., Cuomo, F., Wheeler, P.: Flux control modulation for the dual active bridge DC/DC converter. J. Eng. 2019(17), 4353–4358 (2019). https://doi.org/10.1049/joe.2018.8014

    Article  Google Scholar 

  42. Zengin, S., Boztepe, M.: A novel current modulation method to eliminate low-frequency harmonics in single-stage dual active bridge AC-DC converter. IEEE Trans. Industr. Electron. 67(2), 1048–1058 (2020). https://doi.org/10.1109/TIE.2019.2898597

    Article  Google Scholar 

  43. Kumar, A., Bhat, A.H., Agarwal, P.: Comparative analysis of dual active bridge isolated DC to DC converter with single phase shift and extended phase shift control techniques. In: 2017 6th International Conference on Computer Applications in Electrical Engineering - Recent Advances, CERA 2017, vol. 2018-January, pp. 397–402 (2018). https://doi.org/10.1109/CERA.2017.8343363

  44. Kumar, B.M., Kumar, A., Bhat, A.H., Agarwal, P.: Comparative study of dual active bridge isolated DC to DC converter with single phase shift and dual phase shift control techniques. In: 2017 Recent Developments in Control, Automation and Power Engineering, RDCAPE 2017, vol. 3, pp. 453–458 (2018). https://doi.org/10.1109/RDCAPE.2017.8358314

  45. Kumar, A., Bhat, A.H., Agarwal, P.: Comparative analysis of dual active bridge isolated DC to DC converter with double phase shift and triple phase shift control techniques. In: 2017 Recent Developments in Control, Automation and Power Engineering, RDCAPE 2017, vol. 3, pp. 257–262 (2017). https://doi.org/10.1109/RDCAPE.2017.8358278

  46. Kayaalp, I., Demirdelen, T., Koroglu, T., Cuma, M.U., Bayindir, K.C., Tumay, M.: Comparison of different phase-shift control methods at isolated bidirectional DC-DC converter. Int. J. Appl. Math. Electron. Comput. 4(3), 68 (2016). https://doi.org/10.18100/ijamec.60506

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project PV4SUSTAINABILITY Reference: 333203230 and by the project newERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coelho, S., Sousa, T.J.C., Monteiro, V., Machado, L., Afonso, J.L., Couto, C. (2021). Comparative Analysis and Validation of Different Modulation Strategies for an Isolated DC-DC Dual Active Bridge Converter. In: Afonso, J.L., Monteiro, V., Pinto, J.G. (eds) Sustainable Energy for Smart Cities. SESC 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 375. Springer, Cham. https://doi.org/10.1007/978-3-030-73585-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73585-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73584-5

  • Online ISBN: 978-3-030-73585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics