Skip to main content

Three Alternative Methods for Estimating Hedge Ratios

  • Living reference work entry
  • First Online:
Encyclopedia of Finance
  • 370 Accesses

Abstract

This chapter first discusses four different theoretical models, which include minimum variance, mean-variance, expected utility, and value-at-risk method. Then we use S&P 500 data to show how three alternative estimation methods can be used to estimate hedge ratio. These three methods include OLS method, GARCH method, and cointegration and error correction method. We found that OLS method is not sufficient for estimating hedge ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Without loss of generality, we assume that the size of the future contract is 1.

References

  • Baillie, R.T., and R.J. Myers. 1991. Bivariate Garch estimation of the optimal commodity futures hedge. Journal of Applied Econometrics 6: 109–124.

    Article  Google Scholar 

  • Benet, B.A. 1992. Hedge period length and ex-ante futures hedging effectiveness: The case of foreign-exchange risk cross hedges. Journal of Futures Markets 12: 163–175.

    Article  Google Scholar 

  • Cecchetti, S.G., R.E. Cumby, and S. Figlewski. 1988. Estimation of the optimal futures hedge. Review of Economics and Statistics 70: 623–630.

    Article  Google Scholar 

  • Chen, S.S., C.F. Lee, and K. Shrestha. 2001. On a mean-generalized semivariance approach to determining the hedge ratio. Journal of Futures Markets 21: 581–598.

    Article  Google Scholar 

  • ———. 2003. Futures hedge ratios: A review. The Quarterly Review of Economics and Finance 43 (3): 433–465.

    Article  Google Scholar 

  • Cheung, C.S., C.C.Y. Kwan, and P.C.Y. Yip. 1990. The hedging effectiveness of options and futures: A mean-Gini approach. Journal of Futures Markets 10: 61–74.

    Article  Google Scholar 

  • Chou, W.L., K.K. Fan, and C.F. Lee. 1996. Hedging with the Nikkei index futures: The conventional model versus the error correction model. Quarterly Review of Economics and Finance 36: 495–505.

    Article  Google Scholar 

  • Crum, R.L., D.L. Laughhunn, and J.W. Payne. 1981. Risk-seeking behavior and its implications for financial models. Financial Management 10: 20–27.

    Article  Google Scholar 

  • De Jong, A., F. De Roon, and C. Veld. 1997. Out-of-sample hedging effectiveness of currency futures for alternative models and hedging strategies. Journal of Futures Markets 17: 817–837.

    Article  Google Scholar 

  • Dickey, D.A., and W.A. Fuller. 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057–1072.

    Article  Google Scholar 

  • Ederington, L.H. 1979. The hedging performance of the new futures markets. Journal of Finance 34: 157–170.

    Article  Google Scholar 

  • Engle, R.F., and C.W. Granger. 1987. Co-integration and error correction: Representation, estimation and testing. Econometrica 55: 251–276.

    Article  Google Scholar 

  • Ghosh, A. 1993. Hedging with stock index futures: Estimation and forecasting with error correction model. Journal of Futures Markets 13: 743–752.

    Article  Google Scholar 

  • Grammatikos, T., and A. Saunders. 1983. Stability and the hedging performance of foreign currency futures. Journal of Futures Markets 3: 295–305.

    Article  Google Scholar 

  • Howard, C.T., and L.J. D’Antonio. 1984. A risk-return measure of hedging effectiveness. Journal of Financial and Quantitative Analysis 19: 101–112.

    Article  Google Scholar 

  • Hsin, C.W., J. Kuo, and C.F. Lee. 1994. A new measure to compare the hedging effectiveness of foreign currency futures versus options. Journal of Futures Markets 14: 685–707.

    Article  Google Scholar 

  • Hung, J.C., C.L. Chiu, and M.C. Lee. 2006. Hedging with zero-value at risk hedge ratio. Applied Financial Economics 16: 259–269.

    Article  Google Scholar 

  • Johansen, S., and K. Juselius. 1990. Maximum likelihood estimation and inference on cointegration – With applications to the demand for money. Oxford Bulletin of Economics and Statistics 52: 169–210.

    Article  Google Scholar 

  • Johnson, L.L. 1960. The theory of hedging and speculation in commodity futures. Review of Economic Studies 27: 139–151.

    Article  Google Scholar 

  • Junkus, J.C., and C.F. Lee. 1985. Use of three index futures in hedging decisions. Journal of Futures Markets 5: 201–222.

    Article  Google Scholar 

  • Kolb, R.W., and J. Okunev. 1992. An empirical evaluation of the extended mean-Gini coefficient for futures hedging. Journal of Futures Markets 12: 177–186.

    Article  Google Scholar 

  • ———. 1993. Utility maximizing hedge ratios in the extended mean Gini framework. Journal of Futures Markets 13: 597–609.

    Article  Google Scholar 

  • Kroner, K.F., and J. Sultan. 1993. Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative Analysis 28: 535–551.

    Article  Google Scholar 

  • Lee, C.F., J.E. Finnerty, J. Lee, A.C. Lee, and D.H. Wort. 2013. Security analysis, portfolio management, and financial derivatives. Hackensack: World Scientific Publishers.

    Google Scholar 

  • Lee, H.T., and J. Yoder. 2007. Optimal hedging with a regime-switching time-varying correlation GARCH model. Journal of Futures Markets 27: 495–516.

    Article  Google Scholar 

  • Lence, S.H. 1995. The economic value of minimum-variance hedges. American Journal of Agricultural Economics 77: 353–364.

    Article  Google Scholar 

  • ———. 1996. Relaxing the assumptions of minimum variance hedging. Journal of Agricultural and Resource Economics 21: 39–55.

    Google Scholar 

  • Lien, D. 1996. The effect of the cointegration relationship on futures hedging: A note. Journal of Futures Markets 16: 773–780.

    Article  Google Scholar 

  • ———. 2004. Cointegration and the optimal hedge ratio: The general case. The Quarterly Review of Economics and Finance 44: 654–658.

    Article  Google Scholar 

  • Lien, D., and X. Luo. 1993a. Estimating the extended mean-Gini coefficient for futures hedging. Journal of Futures Markets 13: 665–676.

    Article  Google Scholar 

  • ———. 1993b. Estimating multiperiod hedge ratios in cointegrated markets. Journal of Futures Markets 13: 909–920.

    Article  Google Scholar 

  • Lien, D., and D.R. Shaffer. 1999. Note on estimating the minimum extended Gini hedge ratio. Journal of Futures Markets 19: 101–113.

    Article  Google Scholar 

  • Lien, D., and K. Shrestha. 2007. An empirical analysis of the relationship between hedge ratio and hedging horizon using wavelet analysis. Journal of Futures Markets 27: 127–150.

    Article  Google Scholar 

  • ———. 2010. Estimating optimal hedge ratio: A multivariate skew-normal distribution. Applied Financial Economics 20: 627–636.

    Article  Google Scholar 

  • Lien, D., and Y.K. Tse. 1998. Hedging time-varying downside risk. Journal of Futures Markets 18: 705–722.

    Article  Google Scholar 

  • ———. 2000. Hedging downside risk with futures contracts. Applied Financial Economics 10: 163–170.

    Article  Google Scholar 

  • Maghyereh, A.I., B. Awartani, and H. Abdoh. 2019. The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations. Energy 169: 895–913.

    Article  Google Scholar 

  • Malliaris, A.G., and J.L. Urrutia. 1991. The impact of the lengths of estimation periods and hedging horizons on the effectiveness of a hedge: Evidence from foreign currency futures. Journal of Futures Markets 3: 271–289.

    Article  Google Scholar 

  • Myers, R.J., and S.R. Thompson. 1989. Generalized optimal hedge ratio estimation. American Journal of Agricultural Economics 71: 858–868.

    Article  Google Scholar 

  • Osterwald-Lenum, M. 1992. A note with quantiles of the asymptotic distribution of the maximum likelihood cointegration rank test statistics. Oxford Bulletin of Economics and Statistics 54: 461–471.

    Article  Google Scholar 

  • Phillips, P.C.B., and S. Ouliaris. 1990. Asymptotic properties of residual based tests for cointegration. Econometrica 58: 165–193.

    Article  Google Scholar 

  • Phillips, P.C.B., and P. Perron. 1988. Testing unit roots in time series regression. Biometrika 75: 335–346.

    Article  Google Scholar 

  • Rutledge, D.J.S. 1972. Hedgers’ demand for futures contracts: A theoretical framework with applications to the United States soybean complex. Food Research Institute Studies 11: 237–256.

    Google Scholar 

  • Sephton, P.S. 1993. Hedging wheat and canola at the Winnipeg commodity exchange. Applied Financial Economics 3: 67–72.

    Article  Google Scholar 

  • Shalit, H. 1995. Mean-Gini hedging in futures markets. Journal of Futures Markets 15: 617–635.

    Article  Google Scholar 

  • Sultan, J., A.K. Alexandridis, M. Hasan, and X. Guo. 2019. Hedging performance of multiscale hedge ratios. Journal of Futures Markets 39: 1613–1632.

    Article  Google Scholar 

  • Working, H. 1953. Hedging reconsidered. Journal of Farm Economics 35: 544–561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Syan Chen .

Editor information

Editors and Affiliations

Appendices

Appendix A. Monthly Data of S&P500 Index and Its Futures (January 2005 – August 2020)

Date

SPOT

FUTURES

C_spot

C_futures

1/31/2005

1181.27

1181.7

−30.65

−32

2/28/2005

1203.6

1204.1

22.33

22.4

3/31/2005

1180.59

1183.9

−23.01

−20.2

4/29/2005

1156.85

1158.5

−23.74

−25.4

5/31/2005

1191.5

1192.3

34.65

33.8

6/30/2005

1191.33

1195.5

−0.17

3.2

7/29/2005

1234.18

1236.8

42.85

41.3

8/31/2005

1220.33

1221.4

−13.85

−15.4

9/30/2005

1228.81

1234.3

8.48

12.9

10/31/2005

1207.01

1209.8

−21.8

−24.5

11/30/2005

1249.48

1251.1

42.47

41.3

12/30/2005

1248.29

1254.8

−1.19

3.7

1/31/2006

1280.08

1283.6

31.79

28.8

2/28/2006

1280.66

1282.4

0.58

−1.2

3/31/2006

1294.83

1303.3

14.17

20.9

4/28/2006

1310.61

1315.9

15.78

12.6

5/31/2006

1270.09

1272.1

−40.52

−43.8

6/30/2006

1270.2

1279.4

0.11

7.3

7/31/2006

1276.66

1281.8

6.46

2.4

8/31/2006

1303.82

1305.6

27.16

23.8

9/29/2006

1335.85

1345.4

32.03

39.8

10/31/2006

1377.94

1383.2

42.09

37.8

11/30/2006

1400.63

1402.9

22.69

19.7

12/29/2006

1418.3

1428.4

17.67

25.5

1/31/2007

1438.24

1443

19.94

14.6

2/28/2007

1406.82

1408.9

−31.42

−34.1

3/30/2007

1420.86

1431.2

14.04

22.3

4/30/2007

1482.37

1488.4

61.51

57.2

5/31/2007

1530.62

1532.9

48.25

44.5

6/29/2007

1503.35

1515.4

−27.27

−17.5

7/31/2007

1455.27

1461.9

−48.08

−53.5

8/31/2007

1473.99

1476.7

18.72

14.8

9/28/2007

1526.75

1538.1

52.76

61.4

10/31/2007

1549.38

1554.9

22.63

16.8

11/30/2007

1481.14

1483.7

−68.24

−71.2

12/31/2007

1468.35

1477.2

−12.79

−6.5

1/31/2008

1378.55

1379.6

−89.8

−97.6

2/29/2008

1330.63

1331.3

−47.92

−48.3

3/31/2008

1322.7

1324

−7.93

−7.3

4/30/2008

1385.59

1386

62.89

62

5/30/2008

1400.38

1400.6

14.79

14.6

6/30/2008

1280

1281.1

−120.38

−119.5

7/31/2008

1267.38

1267.1

−12.62

−14

8/29/2008

1282.83

1282.6

15.45

15.5

9/30/2008

1166.36

1169

−116.47

−113.6

10/31/2008

968.75

967.3

−197.61

−201.7

11/28/2008

896.24

895.3

−72.51

−72

12/31/2008

903.25

900.1

7.01

4.8

1/30/2009

825.88

822.5

−77.37

−77.6

2/27/2009

735.09

734.2

−90.79

−88.3

3/31/2009

797.87

794.8

62.78

60.6

4/30/2009

872.81

870

74.94

75.2

5/29/2009

919.14

918.1

46.33

48.1

6/30/2009

919.32

915.5

0.18

−2.6

7/31/2009

987.48

984.4

68.16

68.9

8/31/2009

1020.62

1019.7

33.14

35.3

9/30/2009

1057.08

1052.9

36.46

33.2

10/30/2009

1036.19

1033

−20.89

−19.9

11/30/2009

1095.63

1094.8

59.44

61.8

12/31/2009

1115.1

1110.7

19.47

15.9

1/29/2010

1073.87

1070.4

−41.23

−40.3

2/26/2010

1104.49

1103.4

30.62

33

3/31/2010

1169.43

1165.2

64.94

61.8

4/30/2010

1186.69

1183.4

17.26

18.2

5/31/2010

1089.41

1088.5

−97.28

−94.9

6/30/2010

1030.71

1026.6

−58.7

−61.9

7/30/2010

1101.6

1098.3

70.89

71.7

8/31/2010

1049.33

1048.3

−52.27

−50

9/30/2010

1141.2

1136.7

91.87

88.4

10/29/2010

1183.26

1179.7

42.06

43

11/30/2010

1180.55

1179.6

−2.71

−0.1

12/31/2010

1257.64

1253

77.09

73.4

1/31/2011

1286.12

1282.4

28.48

29.4

2/28/2011

1327.22

1326.1

41.1

43.7

3/31/2011

1325.83

1321

−1.39

−5.1

4/29/2011

1363.61

1359.7

37.78

38.7

5/31/2011

1345.2

1343.9

−18.41

−15.8

6/30/2011

1320.64

1315.5

−24.56

−28.4

7/29/2011

1292.28

1288.4

−28.36

−27.1

8/31/2011

1218.89

1217.7

−73.39

−70.7

9/30/2011

1131.42

1126

−87.47

−91.7

10/31/2011

1253.3

1249.3

121.88

123.3

11/30/2011

1246.96

1246

−6.34

−3.3

12/30/2011

1257.6

1252.6

10.64

6.6

1/31/2012

1312.41

1308.2

54.81

55.6

2/29/2012

1365.68

1364.4

53.27

56.2

3/30/2012

1408.47

1403.2

42.79

38.8

4/30/2012

1397.91

1393.6

−10.56

−9.6

5/31/2012

1310.33

1309.2

−87.58

−84.4

6/29/2012

1362.16

1356.4

51.83

47.2

7/31/2012

1379.32

1374.6

17.16

18.2

8/31/2012

1406.58

1405.1

27.26

30.5

9/28/2012

1440.67

1434.2

34.09

29.1

10/31/2012

1412.16

1406.8

−28.51

−27.4

11/30/2012

1416.18

1414.4

4.02

7.6

12/31/2012

1426.19

1420.1

10.01

5.7

1/31/2013

1498.11

1493.3

71.92

73.2

2/28/2013

1514.68

1513.3

16.57

20

3/29/2013

1569.19

1562.7

54.51

49.4

4/30/2013

1597.57

1592.2

28.38

29.5

5/31/2013

1630.74

1629

33.17

36.8

6/28/2013

1606.28

1599.3

−24.46

−29.7

7/31/2013

1685.73

1680.5

79.45

81.2

8/30/2013

1632.97

1631.3

−52.76

−49.2

9/30/2013

1681.55

1674.3

48.58

43

10/31/2013

1756.54

1751

74.99

76.7

11/29/2013

1805.81

1804.1

49.27

53.1

12/31/2013

1848.36

1841.1

42.55

37

1/31/2014

1782.59

1776.6

−65.77

−64.5

2/28/2014

1859.45

1857.6

76.86

81

3/31/2014

1872.34

1864.6

12.89

7

4/30/2014

1883.95

1877.9

11.61

13.3

5/30/2014

1923.57

1921.5

39.62

43.6

6/30/2014

1960.23

1952.4

36.66

30.9

7/31/2014

1930.67

1924.8

−29.56

−27.6

8/29/2014

2003.37

2001.4

72.7

76.6

9/30/2014

1972.29

1965.5

−31.08

−35.9

10/31/2014

2018.05

2011.4

45.76

45.9

11/28/2014

2067.56

2066.3

49.51

54.9

12/31/2014

2058.9

2052.4

−8.66

−13.9

1/30/2015

1994.99

1988.4

−63.91

−64

2/27/2015

2104.5

2102.8

109.51

114.4

3/31/2015

2067.89

2060.8

−36.61

−42

4/30/2015

2085.51

2078.9

17.62

18.1

5/29/2015

2107.39

2106

21.88

27.1

6/30/2015

2063.11

2054.4

−44.28

−51.6

7/31/2015

2103.84

2098.4

40.73

44

8/31/2015

1972.18

1969.2

−131.66

−129.2

9/30/2015

1920.03

1908.7

−52.15

−60.5

10/30/2015

2079.36

2073.7

159.33

165

11/30/2015

2080.41

2079.8

1.05

6.1

12/31/2015

2043.94

2035.4

−36.47

−44.4

1/29/2016

1940.24

1930.1

−103.7

−105.3

2/29/2016

1932.23

1929.5

−8.01

−0.6

3/31/2016

2059.74

2051.5

127.51

122

4/29/2016

2065.3

2059.1

5.56

7.6

5/31/2016

2096.96

2094.9

31.66

35.8

6/30/2016

2098.86

2090.2

1.9

−4.7

7/29/2016

2173.6

2168.2

74.74

78

8/31/2016

2170.95

2169.5

−2.65

1.3

9/30/2016

2168.27

2160.4

−2.68

−9.1

10/31/2016

2126.15

2120.1

−42.12

−40.3

11/30/2016

2198.81

2198.8

72.66

78.7

12/30/2016

2238.83

2236.2

40.02

37.4

1/31/2017

2278.87

2274.5

40.04

38.3

2/28/2017

2363.64

2362.8

84.77

88.3

3/31/2017

2362.72

2359.2

−0.92

−3.6

4/28/2017

2384.2

2380.5

21.48

21.3

5/31/2017

2411.8

2411.1

27.6

30.6

6/30/2017

2423.41

2420.9

11.61

9.8

7/31/2017

2470.3

2468

46.89

47.1

8/31/2017

2471.65

2470.1

1.35

2.1

9/29/2017

2519.36

2516.1

47.71

46

10/31/2017

2575.26

2572.7

55.9

56.6

11/30/2017

2647.58

2647.9

72.32

75.2

12/29/2017

2673.61

2676

26.03

28.1

1/31/2018

2823.81

2825.8

150.2

149.8

2/28/2018

2713.83

2714.4

−109.98

−111.4

3/30/2018

2640.87

2643

−72.96

−71.4

4/30/2018

2648.05

2647

7.18

4

5/31/2018

2705.27

2705.5

57.22

58.5

6/29/2018

2718.37

2721.6

13.1

16.1

7/31/2018

2816.29

2817.1

97.92

95.5

8/31/2018

2901.52

2902.1

85.23

85

9/28/2018

2913.98

2919

12.46

16.9

10/31/2018

2711.74

2711.1

−202.24

−207.9

11/30/2018

2760.17

2758.3

48.43

47.2

12/31/2018

2506.85

2505.2

−253.32

−253.1

1/31/2019

2704.1

2704.5

197.25

199.3

2/28/2019

2784.49

2784.7

80.39

80.2

3/29/2019

2834.4

2837.8

49.91

53.1

4/30/2019

2945.83

2948.5

111.43

110.7

5/31/2019

2752.06

2752.6

−193.77

−195.9

6/28/2019

2941.76

2944.2

189.7

191.6

7/31/2019

2980.38

2982.3

38.62

38.1

8/30/2019

2926.46

2924.8

−53.92

−57.5

9/30/2019

2976.74

2978.5

50.28

53.7

10/31/2019

3037.56

3035.8

60.82

57.3

11/29/2019

3140.98

3143.7

103.42

107.9

12/31/2019

3230.78

3231.1

89.8

87.4

1/31/2020

3225.52

3224

−5.26

−7.1

2/28/2020

2954.22

2951.1

−271.3

−272.9

3/31/2020

2584.59

2569.7

−369.63

−381.4

4/30/2020

2912.43

2902.4

327.84

332.7

5/29/2020

3044.31

3042

131.88

139.6

6/30/2020

3100.29

3090.2

55.98

48.2

7/31/2020

3271.12

3263.5

170.83

173.3

8/31/2020

3500.31

3498.9

229.19

235.4

Appendix B. Applications of R Language in Estimating Three Different Optimal Hedge Ratios

In this appendix, we show the estimation procedure on how to apply OLS, GARCH, and CECM models to estimate optimal hedge ratios through R language . R language is a high-level computer language that is designed for statistics and graphics. Compared to alternatives, SAS, Matlab or Stata, R is completely free. Another benefit is that it is open source. Users could head to http://cran.r-project.org/ to download and install R language. Based upon monthly S&P 500 index and its futures as presented in Appendix A, the estimation procedures of applying R language to estimate hedge ratio are provided as follows.

First, we use OLS method in term of Eq. (12) to estimate minimum variance hedge ratio. By using linear model (lm) function in R language , we obtain the following program code.

SP500= read.csv(file="SP500.csv") OLS.fit <- lm(C_spot~C_futures, data=SP500) summary(OLS.fit)

Next, we apply a conventional regression model with an AR(2)-GARCH(1,1) error terms to estimate minimum variance hedge ratio . By using rugarch package in R language, we obtain the following program.

library(rugarch) fit.spec <- ugarchspec( variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), mean.model = list(armaOrder = c(2, 0),include.mean = TRUE, external.regressors= cbind(SP500$C_futures)), distribution.model = "norm") GARCH.fit <- ugarchfit(data = cbind(SP500$C_spot), spec = fit.spec) GARCH.fit

Third, we apply the ECM model to estimate minimum variance hedge ratio . We begin by applying an augmented Dickey-Fuller (ADF) test for the presence of unit roots. The Phillips and Ouliaris (1990) residual cointegration test is applied to examine the presence of cointegration. Finally, the minimum variance hedge ratio is estimated by the error correction model. By using tseries package in R language, we obtain the following program.

library(tseries)

# Augmented Dickey-Fuller Test

# Level data

adf.test(SP500$SPOT, k = 1) adf.test(SP500$FUTURES, k = 1)

# First-order differenced data

adf.test(diff(SP500$SPOT), k = 1) adf.test(diff(SP500$FUTURES), k = 1)

# Phillips and Ouliaris (1990) residual cointegration test

po.test(cbind(SP500$FUTURES,SP500$SPOT))

# Engle-Granger two-step procedure

## 1.Estimate cointegrating relationship

reg <- lm(SPOT~FUTURES, data=SP500)

## 2. Compute error term

Resid <- reg$resid

# Estimate optimal hedge ratio using the error correction model

n=length(resid) ECM.fit <-lm(diff(SPOT) ~ -1 + diff(FUTURES) + Resid[1:n-1], data=SP500) summary(ECM.fit)

Finally, we apply a multivariate GARCH(1,1)-BEKK model to estimate dynamic minimum variance hedge ratio.

library(mgarchBEKK) estimated=BEKK(as.matrix(cbind(SP500$C_futures,SP500$C_spot)), order = c(1, 1)) estimated$est.params estimated$asy.se.coef

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, SS., Lee, CF., Lin, FL., Shrestha, K. (2021). Three Alternative Methods for Estimating Hedge Ratios. In: Lee, CF., Lee, A.C. (eds) Encyclopedia of Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-73443-5_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73443-5_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73443-5

  • Online ISBN: 978-3-030-73443-5

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics