Skip to main content

TouchSense: Accurate and Transparent User Re-authentication via Finger Touching

  • Conference paper
  • First Online:
Edge Computing and IoT: Systems, Management and Security (ICECI 2020)

Abstract

Re-authentication identifies the user during the whole usage to enhance the security of smartphones. To avoid frequent interrupts to users, user features should be imperceptibly collected for identification without user assistance. Conventionally, behavior habits (e.g. movement, trail) during the user operation are commonly considered as the most appropriate features for re-authentication. The behavior features, however, are often fluctuating and inevitably sacrifice the accuracy of re-authentication, which puts the phones at risk increasingly. In this paper, we propose TouchSense, an accurate and transparent scheme for user re-authentication. The basic idea is to leverage the combined information of human biometric capacitance and touching behavior for user identification. When the user touches capacitive-based sensors, both information can be automatically collected and applied in the authentication, which is transparent to the user. Based on the authentication results, we build up user-legitimate models to comprehensively evaluate the user’s legitimacy, which reduces misjudgment and further improves accuracy. Moreover, we implement TouchSense on an SX9310 EVKA board and conduct comprehensive experiments to evaluate it. The results illustrate that TouchSense can identify 98% intruders within 10 s, but for legitimate users, the misjudgment is less than 0.9% in 2.6-hours-usage.

Supported by University of Electronic Science and Technology of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett, G., Omote, R.: Projected-capacitive touch technology. Inf. Display 26(3), 16–21 (2010)

    Article  Google Scholar 

  2. Carrizo, C., Ochoa, C., Massuh, L.: Gesture-based signature authentication, 22 March 2016. US Patent 9,292,731

    Google Scholar 

  3. Clancy, T.C., Kiyavash, N., Lin, D.J.: Secure smartcard-based fingerprint authentication. In: Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 45–52. ACM (2003)

    Google Scholar 

  4. Crouse, D., Han, H., Chandra, D., Barbello, B., Jain, A.K.: Continuous authentication of mobile user: fusion of face image and inertial measurement unit data. In: 2015 International Conference on Biometrics (ICB), pp. 135–142. IEEE (2015)

    Google Scholar 

  5. Darlene, M.: Easy way to bypass passcode lock screens on iPhones, iPads running iOS 12 (2018). https://www.computerworld.com/article/3041302/4-new-ways-to-bypass-passcode-lock-screen-on-iphones-ipads-running-ios-9.html

  6. Dascalescu, A.: Biometric authentication overview, advantages and disadvantages (2019). https://heimdalsecurity.com/blog/biometric-authentication/

  7. Delač, K., Grgić M.: A survey of biometric recognition methods (2004)

    Google Scholar 

  8. Derawi, M.O., Nickel, C., Bours, P., Busch, C.: Unobtrusive user-authentication on mobile phones using biometric gait recognition. In: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 306–311. IEEE (2010)

    Google Scholar 

  9. Feng, H., Fawaz, K., Shin, K.G.: Continuous authentication for voice assistants. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pp. 343–355. ACM (2017)

    Google Scholar 

  10. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: On the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)

    Article  Google Scholar 

  11. Fujiwara, O., Ikawa, T.: Numerical calculation of human-body capacitance by surface charge method. Electron. Commun. Japan (Part I: Commun.) 85(12), 38–44 (2002)

    Google Scholar 

  12. Gafurov, D.: A survey of biometric gait recognition: approaches, security and challenges. In: Annual Norwegian Computer Science Conference, pp. 19–21 (2007)

    Google Scholar 

  13. Gray, T.: Projected capacitive touch basics. Projected Capacitive Touch, pp. 5–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98392-9_2

    Chapter  Google Scholar 

  14. Grivna, E.L.: Capacitance touch screen, 7 January 2014. US Patent 8,624,845

    Google Scholar 

  15. Hao, Z., Li, Q.: Towards user re-authentication on mobile devices via on-screen keyboard. In: 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 78–83. IEEE (2016)

    Google Scholar 

  16. Sampathkumar, K., Balaji Sr., P.: Biometric methods - a secure survey. SSRN Electron. J. (2009)

    Google Scholar 

  17. Jason: How to reset android lock screen password and pin (2019). https://www.lifewire.com/reset-android-lock-screen-password-2740708

  18. Jonassen, N.: Human body capacitance: static or dynamic concept? [esd]. In: Electrical Overstress/Electrostatic Discharge Symposium Proceedings, 1998, pp. 111–117. IEEE (1998)

    Google Scholar 

  19. Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for smartphones. In: NDSS, vol. 56, pp. 57–59 (2013)

    Google Scholar 

  20. Li, S., Lu, L., Hussain, M.J., Ye, Y., Zhu, H.: Sentinel: breaking the bottleneck of energy utilization efficiency in RF-powered devices. IEEE Internet Things J. 6(1), 705–717 (2018)

    Article  Google Scholar 

  21. Li, Y., Hu, H., Zhou, G.: Using data augmentation in continuous authentication on smartphones. IEEE Internet Things J. 6(1), 628–640 (2019)

    Article  Google Scholar 

  22. Liu, S.Y., Wang, Y.J., Lu, J.G., Shieh, H.P.D.: 38.3: one glass solution with a single layer of sensors for projected-capacitive touch panels. In: SID Symposium Digest of Technical Papers (2014)

    Google Scholar 

  23. Lorenzo, A.D., Andreoli, A., Battisti, P., Talluri, T., Yasumura, S.: Total body capacitance correlates with total body potassium. Ann. New York Acad. Sci. 904, 259–262 (2010). (In vivo body composition studies)

    Article  Google Scholar 

  24. Lovejoy, B.: 3D mask or photo fools airport and payment face-recognition, but not face id (2019). https://ww.9to5mac.com/2019/12/16/3d-mask/#aprd

  25. Mahfouz, A., Mahmoud, T.M., Eldin, A.S.: A survey on behavioral biometric authentication on smartphones. Inf. Secur. Tech. Rep. 37, 28–37 (2018)

    Google Scholar 

  26. Maiorana, E., Campisi, P., Neri, A.: Biometric signature authentication using radon transform-based watermarking techniques. In: Biometrics Symposium, 2007, pp. 1–6. IEEE (2007)

    Google Scholar 

  27. Maiorana, E., Campisi, P., Neri, A.: Template protection for dynamic time warping based biometric signature authentication. In: 2009 16th International Conference on Digital Signal Processing, pp. 1–6. IEEE (2009)

    Google Scholar 

  28. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of artificial “gummy” fingers on fingerprint systems. Electron. Imaging 4677, 275–289 (2002)

    Google Scholar 

  29. Mi, D.: Single-layer projected capacitive touch panel and method of manufacturing the same (2017)

    Google Scholar 

  30. Mo, M., Li, H., Zhang, J.: Capacitance touch screen with mesh electrodes, 15 March 2012. uS Patent App. 13/226,902

    Google Scholar 

  31. Muaaz, M., Mayrhofer, R.: An analysis of different approaches to gait recognition using cell phone based accelerometers, pp. 293–300 (2013)

    Google Scholar 

  32. Nesa, N., Banerjee, I.: SensorRank: an energy efficient sensor activation algorithm for sensor data fusion in wireless networks. IEEE Internet Things J. 6(2), 2532–2539 (2018)

    Article  Google Scholar 

  33. Nickel, C., Busch, C., Rangarajan, S., Möbius, M.: Using hidden Markov models for accelerometer-based biometric gait recognition. In: Proceedings - 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, March 2011. https://doi.org/10.1109/CSPA.2011.5759842

  34. Primo, A., Phoha, V.V., Kumar, R., Serwadda, A.: Context-aware active authentication using smartphone accelerometer measurements. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 98–105 (2014)

    Google Scholar 

  35. Qi, M., Lu, Y., Li, J., Li, X., Kong, J.: User-specific iris authentication based on feature selection. In: 2008 International Conference on Computer Science and Software Engineering, vol. 1, pp. 1040–1043. IEEE (2008)

    Google Scholar 

  36. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. 2011(1), 3 (2011)

    Article  Google Scholar 

  37. Semtech: Semtech sx9310, ultra-low power smart proximity sensor for SAR (2017). https://www.semtech.com/uploads/documents/sx9310.pdf

  38. Sharma, K.: How dangerous are impersonation attacks? (2018). https://cybersecurity.att.com/blogs/security-essentials/how-dangerous-are-impersonation-attacks

  39. Thang, H.M., Viet, V.Q., Thuc, N.D., Choi, D.: Gait identification using accelerometer on mobile phone, pp. 344–348 (2012)

    Google Scholar 

  40. TycoyokeI: How to fool a fingerprint security system as easy as ABC (2019). https://www.instructables.com/id/How-To-Fool-a-Fingerprint-Security-System-As-Easy-/

  41. Yan, J., Blackwell, A.F., Anderson, R., Grant, A.M.: Password memorability and security: empirical results. In: IEEE Symposium on Security and Privacy, vol. 2, no. 5, pp. 25–31 (2004)

    Google Scholar 

  42. Zhang, S.: Main construction of capacitive touch screen (2019). https://www.vtouchscreen.com/news/main-construction-of-capacitive-touch-screen-28265581.html

  43. Zhang, Y.-B., Li, Q., You, J., Bhattacharya, P.: Palm vein extraction and matching for personal authentication. In: Qiu, G., Leung, C., Xue, X., Laurini, R. (eds.) VISUAL 2007. LNCS, vol. 4781, pp. 154–164. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76414-4_16

    Chapter  Google Scholar 

  44. Zhong, Y., Deng, Y., Meltzner, G.S.: Pace independent mobile gait biometrics, pp. 1–8 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and anonymous reviewers for their comments and feedback, which is helpful to the publication of TouchSense. This work is supported by the National Natural Science Foundation of China (61872061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Li, S., Song, Y., Lu, L., Hou, M. (2021). TouchSense: Accurate and Transparent User Re-authentication via Finger Touching. In: Jiang, H., Wu, H., Zeng, F. (eds) Edge Computing and IoT: Systems, Management and Security. ICECI 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 368. Springer, Cham. https://doi.org/10.1007/978-3-030-73429-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73429-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73428-2

  • Online ISBN: 978-3-030-73429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics