Skip to main content

Clustering Count Data with Stochastic Expectation Propagation

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12672))

Included in the following conference series:

  • 1757 Accesses

Abstract

Clustering count vectors is a challenging task given their sparsity and high-dimensionality. An efficient generative model called EMSD has been recently proposed, as an exponential-family approximation to the Multinomial Scaled Dirichlet distribution, and has shown to offer excellent modeling capabilities in the case of sparse count data and to overcome some limitations of the frameworks based on the Dirichlet distribution. In this work, we develop an approximate Bayesian learning framework for the parameters of a finite mixture of EMSD using the Stochastic Expectation Propagation approach. In this approach, we maintain a global posterior approximation that is being updated in a local way, which reduces the memory consumption, important when making inference in large datasets. Experiments on both synthetic and real count data have been conducted to validate the effectiveness of the proposed algorithm in comparison to other traditional learning approaches. Results show that SEP produces comparable estimates with traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    Google Scholar 

  2. Bouguila, N., Ziou, D.: Unsupervised learning of a finite discrete mixture model based on the multinomial dirichlet distribution: Application to texture modeling. In: Fred, A.L.N. (ed.) Pattern Recognition in Information Systems, Proceedings of the 4th International Workshop on Pattern Recognition in Information Systems, PRIS 2004, in conjunction with ICEIS 2004, Porto, Portugal, April 2004, pp. 118–127. INSTICC Press (2004)

    Google Scholar 

  3. Boyd-Graber, J., Hu, Y., Mimno, D., et al.: Applications of topic models. Found. Trends® Inf. Retrieval 11(2–3), 143–296 (2017)

    Google Scholar 

  4. Bui, T.D., Hernández-Lobato, J.M., Li, Y., Hernández-Lobato, D., Turner, R.E.: Training deep gaussian processes using stochastic expectation propagation and probabilistic backpropagation. arXiv preprint arXiv:1511.03405 (2015)

  5. Elkan, C.: Clustering documents with an exponential-family approximation of the dirichlet compound multinomial distribution. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 289–296. ACM (2006)

    Google Scholar 

  6. Fan, W., Bouguila, N.: Expectation propagation learning of a dirichlet process mixture of beta-liouville distributions for proportional data clustering. Eng. Appl. Artif. Intell. 43, 1–14 (2015)

    Article  Google Scholar 

  7. Gelman, A., et al.: Expectation propagation as a way of life: a framework for bayesian inference on partitioned data. arXiv preprint arXiv:1412.4869 (2017)

  8. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14(1), 1303–1347 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  10. Li, Y., Hernández-Lobato, J.M., Turner, R.E.: Stochastic expectation propagation. In: Advances in Neural Information Processing Systems, pp. 2323–2331 (2015)

    Google Scholar 

  11. Lochner, R.H.: A generalized dirichlet distribution in bayesian life testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 37(1), 103–113 (1975)

    MathSciNet  MATH  Google Scholar 

  12. Ma, Z., Leijon, A.: Expectation propagation for estimating the parameters of the beta distribution. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2082–2085. IEEE (2010)

    Google Scholar 

  13. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150. Association for Computational Linguistics (2011)

    Google Scholar 

  14. Madsen, R.E., Kauchak, D., Elkan, C.: Modeling word burstiness using the dirichlet distribution. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 545–552. ACM (2005)

    Google Scholar 

  15. Margaritis, D., Thrun, S.: A bayesian multiresolution independence test for continuous variables. arXiv preprint arXiv:1301.2292 (2013)

  16. Minka, T.: Estimating a dirichlet distribution (2000)

    Google Scholar 

  17. Minka, T.: Power ep. Technical report, Microsoft Research, Cambridge (2004)

    Google Scholar 

  18. Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 352–359. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  19. Minka, T.P.: Expectation propagation for approximate bayesian inference. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 362–369. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  20. Minka, T.P.: A family of algorithms for approximate Bayesian inference. Ph.D. thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  21. Neal, R.M.: Probabilistic inference using markov chain monte carlo methods (1993)

    Google Scholar 

  22. Opper, M., Winther, O.: A bayesian approach to on-line learning. In: On-line Learning in Neural Networks, pp. 363–378 (1998)

    Google Scholar 

  23. Sumba, X., Zamzami, N., Bouguila, B.: Improving the edcm mixture model with expectation propagation. In: 2020 Association for the Advancement of Artificial Intelligence AAAI. FLAIRS 33 (2020)

    Google Scholar 

  24. Wong, T.T.: Alternative prior assumptions for improving the performance of naïve bayesian classifiers. Data Min. Knowl. Disc. 18(2), 183–213 (2009)

    Article  Google Scholar 

  25. Zamzami, N., Bouguila, N.: Text modeling using multinomial scaled dirichlet distributions. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 69–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_7

    Chapter  Google Scholar 

  26. Zamzami, N., Bouguila, N.: An accurate evaluation of msd log-likelihood and its application in human action recognition. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–5. IEEE (2019)

    Google Scholar 

  27. Zamzami, N., Bouguila, N.: Hybrid generative discriminative approaches based on multinomial scaled dirichlet mixture models. Appl. Intell 49(11), 3783–3800 (2019)

    Article  Google Scholar 

  28. Zamzami, N., Bouguila, N.: A novel scaled dirichlet-based statistical framework for count data modeling: unsupervised learning and exponential approximation. Pattern Recogn. 95, 36–47 (2019)

    Article  Google Scholar 

  29. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Sumba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sumba, X., Zamzami, N., Bouguila, N. (2021). Clustering Count Data with Stochastic Expectation Propagation. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics