Skip to main content

Renoprotective Roles of Curcumin

  • Chapter
  • First Online:
Natural Products and Human Diseases

Abstract

The use of herb-based therapies is increasing over the past decades. These agents have been reported to provide many beneficial effects in many experimental and clinical studies. Curcumin is one of these agents which has potent pharmacological effects enabling it for the prevent and treatment of many diseases and pathologies such as renal disorders, hyperglycemia, oxidative stress, hypertension, and dyslipidemia. However, the exact molecular mechanisms mediating these renoprotective effects of curcumin are not well established. So, in the current study, we surveyed for possible renoprotective roles of curcumin and concluded how curcumin protects against renal injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Protein kinase C.

  2. 2.

    Advanced glycation end products.

  3. 3.

    Receptors for advanced glycation end products.

  4. 4.

    Autonomic nervous system.

  5. 5.

    Renin-angiotensin system.

  6. 6.

    Nuclear factor erythroid 2-related factor 2.

  7. 7.

    Sirtuin.

  8. 8.

    Interleukin.

  9. 9.

    Monocyte chemoattractant protein 1.

  10. 10.

    Tumor necrosis factor-alpha.

  11. 11.

    Peroxisome proliferator-activated receptor.

  12. 12.

    Nuclear factor kappa b.

  13. 13.

    Interferon gamma.

  14. 14.

    Kidney injury molecule 1.

  15. 15.

    Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1.

  16. 16.

    Cathepsine.

  17. 17.

    Heme oxygenase 1.

References

  1. Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., et al. (2013). Chronic kidney disease: Global dimension and perspectives. The Lancet, 382(9888), 260–272.

    Article  Google Scholar 

  2. Coca, S. G., Singanamala, S., & Parikh, C. R. (2012). Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney International, 81(5), 442–448.

    Article  PubMed  Google Scholar 

  3. Koye, D. N., Magliano, D. J., Nelson, R. G., & Pavkov, M. E. (2018). The global epidemiology of diabetes and kidney disease. Advances in Chronic Kidney Disease, 25(2), 121–132.

    Article  PubMed  Google Scholar 

  4. Zghebi, S. S., Steinke, D. T., Carr, M. J., Rutter, M. K., Emsley, R. A., & Ashcroft, D. M. (2017). Examining trends in type 2 diabetes incidence, prevalence and mortality in the UK between 2004 and 2014. Diabetes, Obesity and Metabolism, 19(11), 1537–1545.

    Article  PubMed  Google Scholar 

  5. Galaviz, K. I., Weber, M. B., Straus, A., Haw, J. S., Narayan, K. V., & Ali, M. K. (2018). Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care, 41(7), 1526–1534.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beckman, J. A., & Creager, M. A. (2016). Vascular complications of diabetes. Circulation Research, 118(11), 1771–1785.

    Article  CAS  PubMed  Google Scholar 

  7. Gomez-Lopera, N., Pineda-Trujillo, N., & Diaz-Valencia, P. A. (2019). Correlating the global increase in type 1 diabetes incidence across age groups with national economic prosperity: A systematic review. World Journal of Diabetes, 10(12), 560.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yaribeygi, H., Atkin, S. L., Simental-Mendía, L. E., Barreto, G. E., & Sahebkar, A. (2019). Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. Journal of Cellular Physiology, 234(9), 14873–14882.

    Article  CAS  Google Scholar 

  9. Yaribeygi, H., Maleki, M., Sathyapalani, T., & Sahebkar, A. (2019). The effect of C-peptide on diabetic nephropathy: A review of molecular mechanisms. Life Sciences, 237, 116950

    Google Scholar 

  10. Yaribeygi, H., Butler, A. E., & Sahebkar, A. (2019). Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. Journal of Cellular Physiology, 234(8), 12508–12515.

    Article  CAS  PubMed  Google Scholar 

  11. Warren, A. M., Knudsen, S. T., & Cooper, M. E. (2019). Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opinion on Therapeutic Targets, 23(7), 579–591.

    Article  PubMed  Google Scholar 

  12. Hatcher, H., Planalp, R., Cho, J., Torti, F., & Torti, S. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631–1652.

    Article  CAS  PubMed  Google Scholar 

  13. Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), 921–931.

    Article  CAS  PubMed  Google Scholar 

  14. Mollazadeh, H., Cicero, A. F. G., Blesso, C. N., Pirro, M., Majeed, M., & Sahebkar, A. (2019). Immune modulation by curcumin: The role of interleukin-10. Critical Reviews in Food Science and Nutrition, 59(1), 89–101.

    Article  CAS  PubMed  Google Scholar 

  15. Momtazi, A. A., Derosa, G., Maffioli, P., Banach, M., & Sahebkar, A. (2016). Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Molecular Diagnosis and Therapy, 20(4), 335–345.

    Article  CAS  PubMed  Google Scholar 

  16. Panahi, Y., Ahmadi, Y., Teymouri, M., Johnston, T. P., & Sahebkar, A. (2018). Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Journal of Cellular Physiology, 233(1), 141–152.

    Article  CAS  PubMed  Google Scholar 

  17. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L. E., Majeed, M., et al. (2018). Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled trial. Drug Research, 68(7), 403–409.

    Article  CAS  PubMed  Google Scholar 

  18. Sadeghian, M., Rahmani, S., Jamialahmadi, T., Johnston, T. P., & Sahebkar, A. (2021). The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. Journal of Affective Disorders, 278, 627–636.

    Google Scholar 

  19. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L.E., Majeed, M., Sahebkar, A. (2018) Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes Mellitus: a randomized double-blind placebo-controlled trial. Drug Research68(7), 403-409.

    Google Scholar 

  20. Teymouri, M., Pirro, M., Johnston, T. P., & Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Bio Factors, 43(3), 331–346.

    CAS  Google Scholar 

  21. Soetikno, V., Watanabe, K., Sari, F. R., Harima, M., Thandavarayan, R. A., Veeraveedu, P. T., et al. (2011). Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Molecular Nutrition & Food Research, 55(11), 1655–1665.

    Article  CAS  Google Scholar 

  22. Lu, M., Yin, N., Liu, W., Cui, X., Chen, S., & Wang, E. (2017). Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Research International, 2017, 1516985.

    Google Scholar 

  23. Ameh, O. I., Okpechi, I. G., Agyemang, C., & Kengne, A. P. (2019). Global, regional, and ethnic differences in diabetic nephropathy. In Diabetic Nephropathy (pp. 33–44). Springer.

    Chapter  Google Scholar 

  24. Metsärinne, K., Bröijersen, A., Kantola, I., Niskanen, L., Rissanen, A., Appelroth, T., et al. (2015). High prevalence of chronic kidney disease in Finnish patients with type 2 diabetes treated in primary care. Primary Care Diabetes, 9(1), 31–38.

    Article  PubMed  Google Scholar 

  25. Aldukhayel, A. (2017). Prevalence of diabetic nephropathy among Type 2 diabetic patients in some of the Arab countries. International Journal of Health Sciences, 11(1), 1.

    PubMed  PubMed Central  Google Scholar 

  26. Yaribeygi, H., Farrokhi, F. R., Rezaee, R., & Sahebkar, A. (2018). Oxidative stress induces renal failure: A review of possible molecular pathways. Journal of Cellular Biochemistry, 119(4), 2990–2998.

    Article  CAS  PubMed  Google Scholar 

  27. Yaribeygi, H., Katsiki, N., Butler, A. E., & Sahebkar, A. (2019). Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discovery Today, 24(1), 256–262.

    Google Scholar 

  28. Yaribeygi, H., Atkin, S. L., Pirro, M., & Sahebkar, A. (2019). A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. Journal of Cellular Physiology, 234(6), 8286–8294.

    Article  CAS  PubMed  Google Scholar 

  29. Arora, M. K., & Singh, U. K. (2013). Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vascular Pharmacology, 58(4), 259–271.

    Article  CAS  PubMed  Google Scholar 

  30. Roelofs, J. J., & Vogt, L. (2018). Diabetic nephropathy: Pathophysiology and clinical aspects. Springer.

    Google Scholar 

  31. Kita, T., Imai, S., Sawada, H., Kumagai, H., & Seto, H. (2008). The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Bioscience, Biotechnology, and Biochemistry, 72(7), 1789–1798.

    Article  CAS  PubMed  Google Scholar 

  32. Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., & Pedraza-Chaverrí, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology, 1(1), 448–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: Miniperspective. Journal of Medicinal Chemistry, 60(5), 1620–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., et al. (2017). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174(11), 1325–1348.

    Article  CAS  PubMed  Google Scholar 

  35. Abdollahi, E., Momtazi, A. A., Johnston, T. P., & Sahebkar, A. (2018). Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? Journal of Cellular Physiology, 233(2), 830–848.

    Article  CAS  PubMed  Google Scholar 

  36. Fan, Y., Chen, H., Peng, H., Huang, F., Zhong, J., & Zhou, J. (2017). Molecular mechanisms of curcumin renoprotection in experimental acute renal injury. Frontiers in Pharmacology, 8, 912.

    Google Scholar 

  37. Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2010). β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids and Surfaces B: Biointerfaces, 79(1), 113–125.

    Article  CAS  PubMed  Google Scholar 

  38. Lababidi, N., Sigal, V., Koenneke, A., Schwarzkopf, K., Manz, A., & Schneider, M. (2019). Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein Journal of Nanotechnology, 10(1), 2280–2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopresti, A. L., & Drummond, P. D. (2017). Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. Journal of Affective Disorders, 207, 188–196.

    Google Scholar 

  40. Teter, B., Morihara, T., Lim, G., Chu, T., Jones, M., Zuo, X., et al. (2019). Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiology of Disease, 127, 432–448.

    Google Scholar 

  41. Hussain, Z., Thu, H. E., Amjad, M. W., Hussain, F., Ahmed, T. A., & Khan, S. (2017). Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Materials Science and Engineering: C, 77, 1316–1326.

    Google Scholar 

  42. Lautrette, A., Li, S., Alili, R., Sunnarborg, S. W., Burtin, M., Lee, D. C., et al. (2005). Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: A new therapeutic approach. Nature Medicine, 11(8), 867–874.

    Article  CAS  PubMed  Google Scholar 

  43. Cheung, A., Chertow, G., Greene, T., Kimmel, P., Rahman, M., Reboussin, D., et al. (2018). Benefits and risks of intensive blood-pressure lowering in advanced chronic kidney disease. Journal of Internal Medicine, 284, 106–107.

    Google Scholar 

  44. Russell, V. (2017). Is the use of the Chinese herbal medicine, ningdong granule, a safe and effective alternative to haloperidol for the treatment of tic symptoms in pediatric patients with Tourette Syndrome (TS)? Available at: https://digitalcommons.pcom.edu/cgi/viewcontent.cgi?article=1420&context=pa_systematic_reviews#:~:text=Last%2C%20all%20studies%20used%20only,tics%20in%20the%20patient%20population.&text=Ningdong%20granule%20is%20a%20safe,patients%20diagnosed%20with%20Tourette%20Syndrome.

  45. McLean, W. (2018). Green tea as a safe treatment for non-alcoholic fatty liver disease. Australian Journal of Herbal and Naturopathic Medicine, 30(4), 192–194.

    Google Scholar 

  46. Shoskes, D. A. (1998). Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: A new class of renoprotective agents 1. Transplantation, 66(2), 147–152.

    Article  CAS  PubMed  Google Scholar 

  47. Ugur, S., Ulu, R., Dogukan, A., Gurel, A., Yigit, I. P., Gozel, N., et al. (2015). The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Renal Failure, 37(2), 332–336.

    Article  CAS  PubMed  Google Scholar 

  48. Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual Review of Biochemistry, 86715–86748.

    Google Scholar 

  49. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., et al. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772.

    Google Scholar 

  50. Gyurászová, M., Kovalčíková, A. G., Renczés, E., Kmeťová, K., Celec, P., Bábíčková, J., et al. (2019). Oxidative stress in animal models of acute and chronic renal failure. Disease Markers, 2019, 8690805.

    Google Scholar 

  51. Kowluru, R. A., & Kanwar, M. (2007). Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutrition & Metabolism, 4(1), 8.

    Article  Google Scholar 

  52. Fu, Y., Zheng, S., Lin, J., Ryerse, J., & Chen, A. (2008). Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology, 73(2), 399–409.

    Article  CAS  PubMed  Google Scholar 

  53. Scapagnini, G., Colombrita, C., Amadio, M., D'Agata, V., Arcelli, E., Sapienza, M., et al. (2006). Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxidants & Redox Signaling, 8(3–4), 395–403.

    Article  CAS  Google Scholar 

  54. Chico, L., Ienco, E. C., Bisordi, C., Lo Gerfo, A., Petrozzi, L., Petrucci, A., et al. (2018). Amyotrophic Lateral Sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 17(10), 767–779.

    CAS  Google Scholar 

  55. Al-Kuraishy, H. M., Al-Gareeb, A., & Rasheed, H. A. (2019). Antioxidant and anti-inflammatory effects of curcumin contribute into attenuation of acute gentamicin-induced nephrotoxicity in rats. Asian Journal of Pharmaceutical and Clinical Research, 12(3), 466–468.

    Article  CAS  Google Scholar 

  56. Fazal, Y., Fatima, S. N., Shahid, S. M., & Mahboob, T. (2015). Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity. Journal of the Renin-Angiotensin-Aldosterone System, 16(4), 1046–1051.

    Article  CAS  PubMed  Google Scholar 

  57. Li, H.-Y., Yang, M., Li, Z., & Meng, Z. (2017). Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. International Journal of Molecular Medicine, 39(5), 1307–1316.

    Article  CAS  PubMed  Google Scholar 

  58. Momeni, H. R., & Eskandari, N. (2017). Effect of curcumin on kidney histopathological changes, lipid peroxidation and total antioxidant capacity of serum in sodium arsenite-treated mice. Experimental and Toxicologic Pathology, 69(2), 93–97.

    Article  CAS  PubMed  Google Scholar 

  59. Ali, B. H., Al-Salam, S., Al Suleimani, Y., Al Kalbani, J., Al Bahlani, S., Ashique, M., et al. (2018). Curcumin ameliorates kidney function and oxidative stress in experimental chronic kidney disease. Basic & Clinical Pharmacology & Toxicology, 122(1), 65–73.

    Article  CAS  Google Scholar 

  60. Yang, Y., Duan, W., Lin, Y., Yi, W., Liang, Z., Yan, J., et al. (2013). SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radical Biology and Medicine, 65, 667–679.

    Google Scholar 

  61. Mora, C., & Navarro, J. F. (2006). Inflammation and diabetic nephropathy. Current Diabetes Reports, 6(6), 463–468.

    Article  CAS  PubMed  Google Scholar 

  62. Mahmood, N., Rashid Awan, M. S., Akhlaq, H., & Amir, S. (2018). Correlation of inflammatory markers C-reactive protein and interleukin 6 with visfatin in chronic kidney disease patients. Clinical Trials and Drug Interactions, 1(1), 29–35.

    Google Scholar 

  63. Kooman, J. P., Dekker, M. J., Usvyat, L. A., Kotanko, P., van der Sande, F. M., Schalkwijk, C. G., et al. (2017). Inflammation and premature aging in advanced chronic kidney disease. American Journal of Physiology-Renal Physiology, 313(4), F938–F950.

    Article  PubMed  Google Scholar 

  64. Navarro-González, J. F., Mora-Fernández, C., De Fuentes, M. M., & García-Pérez, J. (2011). Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Reviews Nephrology, 7(6), 327.

    Article  PubMed  Google Scholar 

  65. Wada, J., & Makino, H. (2013). Inflammation and the pathogenesis of diabetic nephropathy. Clinical Science, 124(3), 139–152.

    Article  CAS  PubMed  Google Scholar 

  66. Elmarakby, A. A., & Sullivan, J. C. (2012). Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics, 30(1), 49–59.

    Article  CAS  PubMed  Google Scholar 

  67. Ghosh, S. S., Krieg, R., Massey, H. D., Sica, D. A., Fakhry, I., Ghosh, S., et al. (2012). Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5∕6 nephrectomized rats: Role of phospholipase and cyclooxygenase. American Journal of Physiology-Renal Physiology, 302(4), F439–F454.

    Article  CAS  PubMed  Google Scholar 

  68. Awad, A. S., & El-Sharif, A. A. (2011). Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. International Immunopharmacology, 11(8), 992–996.

    Article  CAS  PubMed  Google Scholar 

  69. Soetikno, V., Sari, F. R., Lakshmanan, A. P., Arumugam, S., Harima, M., Suzuki, K., et al. (2013). Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the N rf 2–keap1 pathway. Molecular Nutrition & Food Research, 57(9), 1649–1659.

    Article  CAS  Google Scholar 

  70. Buyuklu, M., Kandemir, F. M., Ozkaraca, M., Set, T., Bakirci, E. M., & Topal, E. (2014). Protective effect of curcumin against contrast induced nephropathy in rat kidney: What is happening to oxidative stress, inflammation, autophagy and apoptosis. European Review for Medical and Pharmacological Sciences, 18(4), 461–470.

    CAS  PubMed  Google Scholar 

  71. Reed, J. C. (2000). Mechanisms of apoptosis. The American Journal of Pathology, 157(5), 1415–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanz, A. B., Santamaría, B., Ruiz-Ortega, M., Egido, J., & Ortiz, A. (2008). Mechanisms of renal apoptosis in health and disease. Journal of the American Society of Nephrology, 19(9), 1634–1642.

    Article  CAS  PubMed  Google Scholar 

  73. Nagata, S. (2018). Apoptosis and clearance of apoptotic cells. Annual Review of Immunology, 36, 489–517.

    Google Scholar 

  74. Mehta, N., Gava, A. L., Zhang, D., Gao, B., & Krepinsky, J. C. (2019). Follistatin protects against glomerular mesangial cell apoptosis and oxidative stress to ameliorate chronic kidney disease. Antioxidants & Redox Signaling, 31(8), 551–571.

    Article  CAS  Google Scholar 

  75. Coughlan, M. T., Higgins, G. C., Nguyen, T.-V., Penfold, S. A., Thallas-Bonke, V., Tan, S. M., et al. (2016). Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis. Diabetes, 65(4), 1085–1098.

    Article  CAS  PubMed  Google Scholar 

  76. Schelling, J. R. (2016). Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatric Nephrology, 31(5), 693–706.

    Article  PubMed  Google Scholar 

  77. Mortezaee, K., Salehi, E., Mirtavoos-mahyari, H., Motevaseli, E., Najafi, M., Farhood, B., et al. (2019). Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. Journal of Cellular Physiology, 234(8), 12537–12550.

    Article  CAS  PubMed  Google Scholar 

  78. Wei, Y., Gao, J., Qin, L., Xu, Y., Shi, H., Qu, L., et al. (2017). Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy. Experimental and Therapeutic Medicine, 14(6), 6052–6058.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, J., Pan, X., Fu, H., Zheng, Y., Dai, Y., Yin, Y., et al. (2017). Effect of curcumin on glycerol-induced acute kidney injury in rats. Scientific Reports, 7(1), 1–11.

    Google Scholar 

  80. Alkuraishy, H. M., Al-Gareeb, A. I., & Rasheed, H. A. (2019). Nephroprotective effect of Curcumin (Curcuma Longa) in acute nephrotoxicity in Sprague-Dawley rats. Journal of Contemporary Medical Sciences, 5(2). Retrieved from http://www.jocms.org/index.php/jcms/article/view/580

  81. Khanna, A., English, S. W., Wang, X. S., Ham, K., Tumlin, J., Szerlip, H., et al. (2017). Angiotensin II for the treatment of vasodilatory shock. New England Journal of Medicine, 377(5), 419–430.

    Article  CAS  PubMed  Google Scholar 

  82. Fountain, J. H., & Lappin, S. L. (2019). Physiology, Renin Angiotensin System. In StatPearls [Internet]. StatPearls Publishing.

    Google Scholar 

  83. Okuyama, S., Sakagawa, T., Chaki, S., Imagawa, Y., Ichiki, T., & Inagami, T. (1999). Anxiety-like behavior in mice lacking the angiotensin II type-2 receptor. Brain Research, 821(1), 150–159.

    Article  CAS  PubMed  Google Scholar 

  84. Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G., & Turner, A. J. (2000). A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry, 275(43), 33238–33243.

    Article  CAS  PubMed  Google Scholar 

  85. Siragy, H. M., & Carey, R. M. (2010). Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. American Journal of Nephrology, 31(6), 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Urushihara, M., & Kagami, S. (2017). Role of the intrarenal renin–angiotensin system in the progression of renal disease. Pediatric Nephrology, 32(9), 1471–1479.

    Article  PubMed  Google Scholar 

  87. Wolf, G. (2004). New insights into the pathophysiology of diabetic nephropathy: From haemodynamics to molecular pathology. European Journal of Clinical Investigation, 34(12), 785–796.

    Article  CAS  PubMed  Google Scholar 

  88. Messaoudi, S., Azibani, F., Delcayre, C., & Jaisser, F. (2012). Aldosterone, mineralocorticoid receptor, and heart failure. Molecular and Cellular Endocrinology, 350(2), 266–272.

    Article  CAS  PubMed  Google Scholar 

  89. Jun, M., Jardine, M. J., Perkovic, V., Pilard, Q., Billot, L., Rodgers, A., et al. (2019). Hyperkalemia and renin-angiotensin aldosterone system inhibitor therapy in chronic kidney disease: A general practice-based, observational study. PLoS One, 14(3), e0213192.

    Google Scholar 

  90. Weir, M. R., Bakris, G. L., Gross, C., Mayo, M. R., Garza, D., Stasiv, Y., et al. (2016). Treatment with patiromer decreases aldosterone in patients with chronic kidney disease and hyperkalemia on renin-angiotensin system inhibitors. Kidney International, 90(3), 696–704.

    Article  CAS  PubMed  Google Scholar 

  91. Vejakama, P., Ingsathit, A., McKay, G. J., Maxwell, A. P., McEvoy, M., Attia, J., et al. (2017). Treatment effects of renin-angiotensin aldosterone system blockade on kidney failure and mortality in chronic kidney disease patients. BMC Nephrology, 18(1), 342.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Abd Allah, E. S., & Gomaa, A. M. (2015). Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: Role of angiotensin converting enzyme 1. Applied Physiology, Nutrition, and Metabolism, 40(10), 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  93. Dedkova, E. N. (2015). Some like it hot: Cardioprotective effect of curcumin in chronic kidney disease. Springer.

    Google Scholar 

  94. Xu, X., Cai, Y., & Yu, Y. (2018). Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology, 26(5), 1257–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He, J., Xu, Y., Koya, D., & Kanasaki, K. (2013). Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clinical and Experimental Nephrology, 17(4), 488–497.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao, H., Dong, Y., Tian, X., Tan, T. K., Liu, Z., Zhao, Y., et al. (2013). Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World Journal of Nephrology, 2(3), 84.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Johnson, T. S., Fisher, M., Haylor, J. L., Hau, Z., Skill, N. J., Jones, R., et al. (2007). Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. Journal of the American Society of Nephrology, 18(12), 3078–3088.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, Z.-H., Wei, F., Vaziri, N. D., Cheng, X.-L., Bai, X., Lin, R.-C., et al. (2015). Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Scientific Reports, 5, 14472.

    Google Scholar 

  99. Zhang, D., Huang, C., Yang, C., Liu, R. J., Wang, J., Niu, J., et al. (2011). Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respiratory Research, 12(1), 154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou, X., Zhang, J., Xu, C., & Wang, W. (2014). Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition. Journal of Pharmacological Sciences, 126(4), 344–350.

    Article  CAS  PubMed  Google Scholar 

  101. Saidi, A., Kasabova, M., Vanderlynden, L., Wartenberg, M., Kara-Ali, G. H., Marc, D., et al. (2019). Curcumin inhibits the TGF-β1-dependent differentiation of lung fibroblasts via PPARγ-driven upregulation of cathepsins B and L. Scientific Reports, 9(1), 1–15.

    Article  CAS  Google Scholar 

  102. Smith, M. R., Gangireddy, S. R., Narala, V. R., Hogaboam, C. M., Standiford, T. J., Christensen, P. J., et al. (2010). Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology, 298(5), L616–L625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, S., Jiang, B., Wang, H., Shen, C., Chen, H., & Zeng, L. (2017). Curcumin suppresses intestinal fibrosis by inhibition of PPARγ-mediated epithelial-Mesenchymal transition. Evidence-Based Complementary and Alternative Medicine, 2017.

    Google Scholar 

  104. Rodriguez, L. R., Bui, S., Beuschel, R., Ellis, E., Liberti, E., Chhina, M., et al. (2019). Curcumin induced oxidative stress attenuation by N-acetylcysteine co-treatment: a fibroblast and epithelial cell in-vitro study in idiopathic pulmonary fibrosis. Molecular Medicine, 25(1), 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, X., Liu, Y., Li, C., Wang, X., Zhu, R., Liu, C., et al. (2017). Recent advances of curcumin in the prevention and treatment of renal fibrosis. BioMed Research International, 2017, 2418671.

    Google Scholar 

  106. Soetikno, V., Sari, F. R., Veeraveedu, P. T., Thandavarayan, R. A., Harima, M., Sukumaran, V., et al. (2011). Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutrition & Metabolism, 8(1), 35.

    Article  CAS  Google Scholar 

  107. Zhong, F., Chen, H., Han, L., Jin, Y., & Wang, W. (2011). Curcumin attenuates lipopolysaccharide-induced renal inflammation. Biological and Pharmaceutical Bulletin, 34(2), 226–232.

    Article  CAS  PubMed  Google Scholar 

  108. Jones, E. A., Shahed, A., & Shoskes, D. A. (2000). Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction. Urology, 56(2), 346–351.

    Article  CAS  PubMed  Google Scholar 

  109. Gaedeke, J., Noble, N. A., & Border, W. A. (2005). Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney International, 68(5), 2042–2049.

    Article  CAS  PubMed  Google Scholar 

  110. Ghelani, H., Razmovski-Naumovski, V., Chang, D., & Nammi, S. (2019). Chronic treatment of curcumin improves hepatic lipid metabolism and alleviates the renal damage in adenine-induced chronic kidney disease in Sprague-Dawley rats. BMC Nephrology, 20(1), 1–13.

    Article  Google Scholar 

  111. Zheng, L., Li, Y., Li, X., Kou, J., Zhong, Z., Jiang, Y., et al. (2016). Combination of hydroxyl acetylated curcumin and ultrasound induces macrophage autophagy with anti-apoptotic and anti-lipid aggregation effects. Cellular Physiology and Biochemistry, 39(5), 1746–1760.

    Article  CAS  PubMed  Google Scholar 

  112. Molina-Jijón, E., Aparicio-Trejo, O. E., Rodríguez-Muñoz, R., León-Contreras, J. C., del Carmen, C.-A. M., Medina-Campos, O. N., et al. (2016). The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. Bio Factors, 42(6), 686–702.

    Google Scholar 

  113. Kim, B. H., Lee, E. S., Choi, R., Nawaboot, J., Lee, M. Y., Lee, E. Y., et al. (2016). Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Medical Journal, 57(3), 664–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sampanis, C. (2008). Management of hyperglycemia in patients with diabetes mellitus and chronic renal failure. Hippokratia, 12(1), 22.

    PubMed  PubMed Central  Google Scholar 

  115. Meng, B., Li, J., & Cao, H. (2013). Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Current Pharmaceutical Design, 19(11), 2101–2113.

    CAS  PubMed  Google Scholar 

  116. Tabrizi, R., Vakili, S., Lankarani, K. B., Akbari, M., Mirhosseini, N., Ghayour-Mobarhan, M., et al. (2018). The effects of curcumin on glycemic control and lipid profiles among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Current Pharmaceutical Design, 24(27), 3184–3199.

    Article  CAS  PubMed  Google Scholar 

  117. L-q, S., & H-y, C. (2017). Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi Journal of Biological Sciences, 24(8), 1776–1780.

    Article  Google Scholar 

  118. Liu, N., Shi, Y., & Zhuang, S. (2016). Autophagy in chronic kidney diseases. Kidney Diseases, 2(1), 37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shakeri, A., Cicero, A. F., Panahi, Y., Mohajeri, M., & Sahebkar, A. (2019). Curcumin: A naturally occurring autophagy modulator. Journal of Cellular Physiology, 234(5), 5643–5654.

    Article  CAS  PubMed  Google Scholar 

  120. Liu, R., Zhang, H., Yang, J., Wang, J., Liu, J., & Li, C. (2018). Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. European Review for Medical and Pharmacological Sciences, 22, 7500–7508.

    Google Scholar 

  121. Moreillon, J. J., Bowden, R. G., Deike, E., Griggs, J., Wilson, R., Shelmadine, B., et al. (2013). The use of an anti-inflammatory supplement in patients with chronic kidney disease. Journal of Complementary and Integrative Medicine, 10(1), 143–152.

    Article  Google Scholar 

  122. Khajehdehi, P., Pakfetrat, M., Javidnia, K., Azad, F., Malekmakan, L., Nasab, M. H., et al. (2011). Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study. Scandinavian Journal of Urology and Nephrology, 45(5), 365–370.

    Article  CAS  PubMed  Google Scholar 

  123. Khajehdehi, P., Zanjaninejad, B., Aflaki, E., Nazarinia, M., Azad, F., Malekmakan, L., et al. (2012). Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: A randomized and placebo-controlled study. Journal of Renal Nutrition, 22(1), 50–57.

    Article  CAS  PubMed  Google Scholar 

  124. Weir, M. A., Walsh, M., Cuerden, M. S., Sontrop, J. M., Chambers, L. C., & Garg, A. X. (2018). Micro-particle curcumin for the treatment of chronic kidney disease-1: Study protocol for a multicenter clinical trial. Canadian Journal of Kidney Health and Disease, 52054358118813088.

    Google Scholar 

  125. Shelmadine, B. D., Bowden, R. G., Moreillon, J. J., Cooke, M. B., Yang, P., Deike, E., et al. (2017). A pilot study to examine the effects of an anti-inflammatory supplement on eicosanoid derivatives in patients with chronic kidney disease. The Journal of Alternative and Complementary Medicine, 23(8), 632–638.

    Article  PubMed  Google Scholar 

  126. Jiménez-Osorio, A. S., García-Niño, W. R., González-Reyes, S., Álvarez-Mejía, A. E., Guerra-León, S., Salazar-Segovia, J., et al. (2016). The effect of dietary supplementation with curcumin on redox status and Nrf 2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. Journal of Renal Nutrition, 26(4), 237–244.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the “Research Center of Physiology, Semnan University of Medical Sciences (Semnan, Iran)” for providing technical supports.

Conflict of Interests

Muhammed Majeed is the founder of Sabinsa Corp. and Sami Labs Ltd. Other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yaribeygi, H., Maleki, M., Majeed, M., Jamialahmadi, T., Sahebkar, A. (2021). Renoprotective Roles of Curcumin. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_38

Download citation

Publish with us

Policies and ethics