Skip to main content

Gastrointestinal, Hepatobiliary, and Pancreatic Tumors

  • Chapter
  • First Online:
Practical Oncologic Molecular Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1688 Accesses

Abstract

The concepts of “personalized medicine” and “genomic medicine” raise an emerging medical discipline that incorporates molecular genetic testing into clinical care of various diseases for diagnostic and therapeutic decision-making. The field of personalized cancer therapy is rapidly growing with dramatic changes of conventional clinical management and dynamic development of new therapeutic strategies for cancers in the gastrointestinal (GI) system. A proper selection of “targeting” or “tailored” anticancer therapies relies on the information supplied by molecular genetic analysis. Also molecular findings are often and tremendously helpful in resolving the challenges of achieving accurate diagnoses solely based on evaluation and other traditional methods. New tumor classification adopting molecular and genomic alterations will profoundly and comprehensively alter the current understanding of GI neoplastic diseases and their clinical diagnosis, prognosis, and management. Overall, molecular genetic pathology plays an integral role in the clinical diagnosis and treatment of GI tumors. This chapter reviews molecular knowledge and practice widely used in the clinical management of gastrointestinal tract, hepatocytic, and pancreatic neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milne AN, et al. Nature meets nurture: molecular genetics of gastric cancer. Hum Genet. 2009;126(5):615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azarhoosh R, Ebneghasem R, Besharat S. HER-2/neu gene amplification in gastric adenocarcinoma and its relationship with clinical and pathological findings. J Gastrointest Oncol. 2017;8(6):1046–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol. 2016;22(19):4619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao D, Klempner SJ, Chao J. Progress and challenges in HER2-positive gastroesophageal adenocarcinoma. J Hematol Oncol. 2019;12(1):50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article  CAS  Google Scholar 

  6. Serra O, et al. Comparison and applicability of molecular classifications for gastric cancer. Cancer Treat Rev. 2019;77:29–34.

    Article  CAS  PubMed  Google Scholar 

  7. Casali PG, et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv267.

    Article  CAS  PubMed  Google Scholar 

  8. Niinuma T, Suzuki H, Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol. 2018;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oppelt PJ, Hirbe AC, Van Tine BA. Gastrointestinal stromal tumors (GISTs): point mutations matter in management, a review. J Gastrointest Oncol. 2017;8(3):466–73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Heinrich MC, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10.

    Article  CAS  PubMed  Google Scholar 

  11. Boikos SA, et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016;2(7):922–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Serrano C, George S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin Cancer Res. 2020;26(19):5078–85.

    Article  CAS  PubMed  Google Scholar 

  13. Li GZ, Raut CP. Targeted therapy and personalized medicine in gastrointestinal stromal tumors: drug resistance, mechanisms, and treatment strategies. Onco Targets Ther. 2019;12:5123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan S, et al. Genomic subtypes of GISTs for stratifying patient response to sunitinib following imatinib resistance: a pooled analysis and systematic review. Dis Markers. 2018;2018:1368617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Demetri GD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.

    Article  CAS  PubMed  Google Scholar 

  16. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  17. Siegel RL, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145.

    Article  PubMed  Google Scholar 

  18. Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut. 2011;60(1):116–29.

    Article  CAS  PubMed  Google Scholar 

  19. Merla A, Goel S. Novel drugs targeting the epidermal growth factor receptor and its downstream pathways in the treatment of colorectal cancer: a systematic review. Chemother Res Pract. 2012;2012:387172.

    PubMed  PubMed Central  Google Scholar 

  20. Sepulveda AR, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2017;141(5):625–57.

    Article  CAS  PubMed  Google Scholar 

  21. Eklof V, et al. The prognostic role of KRAS, BRAF, PIK3CA and PTEN in colorectal cancer. Br J Cancer. 2013;108(10):2153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee MKC, Loree JM. Current and emerging biomarkers in metastatic colorectal cancer. Curr Oncol. 2019;26(Suppl 1):S7–S15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richman S. Deficient mismatch repair: read all about it (review). Int J Oncol. 2015;47(4):1189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engel C, et al. Associations of pathogenic variants in MLH1, MSH2, and MSH6 with risk of colorectal adenomas and tumors and with somatic mutations in patients with lynch syndrome. Gastroenterology. 2020;158(5):1326–33.

    Article  CAS  PubMed  Google Scholar 

  25. Olkinuora A, et al. Molecular basis of mismatch repair protein deficiency in tumors from lynch suspected cases with negative germline test results. Cancers (Basel). 2020;12(7):1.

    Article  CAS  Google Scholar 

  26. Funkhouser WK Jr, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14(2):91–103.

    Article  CAS  PubMed  Google Scholar 

  27. Syngal S, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62; quiz 263.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gilson P, et al. Evaluation of 3 molecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci Rep. 2020;10(1):16386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ratti M, et al. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci. 2018;75(22):4151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murphy KM, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn. 2006;8(3):305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perucho M. Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58:5248–5257. Cancer Res, 1999. 1998;59(1):249–56.

    Google Scholar 

  32. Pawlik TM, Raut CP, Rodriguez-Bigas MA. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers. 2004;20(4–5):199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ganesh K, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16(6):361–75.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morse MA, Hochster H, Benson A. Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy. Oncologist. 2020;25(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  35. Dai D, et al. Association between the microsatellite instability status and the efficacy of postoperative adjuvant chemoradiotherapy in patients with gastric cancer. Front Oncol. 2019;9:1452.

    Article  PubMed  Google Scholar 

  36. Calva D, Howe JR. Hamartomatous polyposis syndromes. Surg Clin North Am. 2008;88(4):779–817, vii.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brosens LA, et al. Gastrointestinal polyposis syndromes. Curr Mol Med. 2007;7(1):29–46.

    Article  CAS  PubMed  Google Scholar 

  38. Kanth P, et al. Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol. 2017;112(10):1509–25.

    Article  PubMed  Google Scholar 

  39. Bettington M, et al. The challenging diagnosis of Cronkhite-Canada syndrome in the upper gastrointestinal tract: a series of 7 cases with clinical follow-up. Am J Surg Pathol. 2014;38(2):215–23.

    Article  PubMed  Google Scholar 

  40. Jain S, et al. Molecular genetics of hepatocellular neoplasia. Am J Transl Res. 2010;2(1):105–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Desert R, et al. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology. 2017;66(5):1502–18.

    Article  CAS  PubMed  Google Scholar 

  42. Thillai K, Ross P, Sarker D. Molecularly targeted therapy for advanced hepatocellular carcinoma – a drug development crisis? World J Gastrointest Oncol. 2016;8(2):173–85.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dominguez DA, Wang XW. Impact of next-generation sequencing on outcomes in hepatocellular carcinoma: how precise are we really? J Hepatocell Carcinoma. 2020;7:33–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Montironi C, Montal R, Llovet JM. New drugs effective in the systemic treatment of hepatocellular carcinoma. Clin Liver Dis (Hoboken). 2019;14(2):56–61.

    Article  Google Scholar 

  45. Liu Z, et al. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):447.

    Article  PubMed  PubMed Central  Google Scholar 

  46. De Mattia E, et al. Pharmacogenetics of the systemic treatment in advanced hepatocellular carcinoma. World J Gastroenterol. 2019;25(29):3870–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Calderaro J, et al. Molecular and histological correlations in liver cancer. J Hepatol. 2019;71(3):616–30.

    Article  CAS  PubMed  Google Scholar 

  48. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17.

    Article  CAS  PubMed  Google Scholar 

  49. Sakorafas GH, Smyrniotis V. Molecular biology of pancreatic cancer: how useful is it in clinical practice? JOP. 2012;13(4):332–7.

    PubMed  Google Scholar 

  50. Waddell N, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicolle R, et al. Establishment of a pancreatic adenocarcinoma molecular gradient (PAMG) that predicts the clinical outcome of pancreatic cancer. EBioMedicine. 2020;57:102858.

    Article  PubMed  PubMed Central  Google Scholar 

  52. de Biase D, et al. The role of next-generation sequencing in the cytologic diagnosis of pancreatic lesions. Arch Pathol Lab Med. 2018;142(4):458–64.

    Article  PubMed  Google Scholar 

  53. Strimpakos AS, Syrigos KN, Saif MW. The molecular targets for the diagnosis and treatment of pancreatic cancer. Gut Liver. 2010;4(4):433–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yachida S, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res. 2012;18(22):6339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puleo F, et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology. 2018;155(6):1999–2013. e3

    Article  PubMed  Google Scholar 

  56. Zarkavelis G, et al. Genetic mapping of pancreatic cancer by targeted next-generation sequencing in a cohort of patients managed with nab-paclitaxel-based chemotherapy or agents targeting the EGFR axis: a retrospective analysis of the Hellenic Cooperative Oncology Group (HeCOG). ESMO Open. 2019;4(5):e000525.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chan-Seng-Yue M, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet. 2020;52(2):231–40.

    Article  CAS  PubMed  Google Scholar 

  58. Chang DK, Grimmond SM, Biankin AV. Pancreatic cancer genomics. Curr Opin Genet Dev. 2014;24:74–81.

    Article  CAS  PubMed  Google Scholar 

  59. Amanam I, Chung V. Targeted therapies for pancreatic cancer. Cancers (Basel). 2018;10(2):36.

    Article  CAS  Google Scholar 

  60. Sato-Dahlman M, Wirth K, Yamamoto M. Role of gene therapy in pancreatic cancer-a review. Cancers (Basel). 2018;10(4):103.

    Google Scholar 

  61. Al-Haddad M. Role of emerging molecular markers in pancreatic cyst fluid. Endosc Ultrasound. 2015;4(4):276–83.

    Article  PubMed  PubMed Central  Google Scholar 

  62. de la Fuente J, Majumder S. Molecular diagnostics and testing for pancreatic cysts. Curr Treat Options Gastroenterol. 2020 Jan 27. Online ahead of print.

    Google Scholar 

  63. Bournet B, et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin Transl Gastroenterol. 2016;7:e157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fashoyin-Aje L, et al. FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist. 2019;24(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  66. Das S, et al.: All in the levels-programmed death-ligand 1 expression as a biomarker for immune checkpoint inhibitor response in patients with gastrointestinal cancer. Oncologist. 2021;26(1):e186-e188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoli Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammad, M.K., Chen, G. (2021). Gastrointestinal, Hepatobiliary, and Pancreatic Tumors. In: Ding, Y., Zhang, L. (eds) Practical Oncologic Molecular Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-73227-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73227-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73226-4

  • Online ISBN: 978-3-030-73227-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics