Skip to main content

Compressed Sensing: From Big Data to Relevant Data

  • Reference work entry
  • First Online:
Handbook of Nondestructive Evaluation 4.0
  • 1902 Accesses

Abstract

Though the ever-increasing availability of digital data in the context of NDE 4.0 is mostly considered a blessing, it can turn to a curse quite rapidly: managing large amounts of data puts a burden on the sensor devices in terms of sampling and transmission, the networks, as well as the server infrastructure in terms of storing, maintaining, and accessing the data. Yet, NDE data can be highly redundant so the storage of massive amounts of data may indeed be wasteful. This is the main reason why focusing on relevant data as early as possible in the NDE process is highly advocated in the context of NDE 4.0. This chapter introduces Compressed Sensing as a potential approach to put this vision to practice. Compressed Sensing theory has shown that sampling signals with sampling rates that are significantly below the Shannon-Nyquist rate is possible without loss of information, provided that prior knowledge about the signals to be acquired is available. In fact, we may sample as low as the actual information rate if our prior knowledge is sufficiently accurate. In the NDE 4.0 context, prior knowledge can stem from the known inspection task and geometry but it can also include previous recordings of the same piece (such as in Structural Health Monitoring), information stored in the digital product memory along the products’ life cycle, or predictions generated through the products’ digital twins. In addition to data reduction, reconstruction algorithms developed in the Compressed Sensing community can be applied for enhanced processing of NDE data, providing added value in terms of accuracy or reliability. The chapter introduces Compressed Sensing basics and gives some concrete examples of its application in the NDE 4.0 context, in particular for ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cawley P. Structural health monitoring: closing the gap between research and industrial deployment. Struct Health Monit. 2018;17(5):1225–44.

    Article  Google Scholar 

  2. Valeske B, Osman A, Römer F, Tschuncky R. Next generation NDE systems as IIoT elements of industry 4.0. Res Nondestruct Eval. 2020;31:340.

    Article  Google Scholar 

  3. Vrana J, Singh R. NDE 4.0 – a design thinking perspective. J Nondestruct Eval. 2021;40(1):8.

    Article  Google Scholar 

  4. Unser M. Sampling – 50 years after Shannon. Proc IEEE. 2000;88(4):569–87.

    Article  Google Scholar 

  5. Foucart S, Rauhut H. A mathematical introduction to compressive sensing. Birkhäuser; 2013.

    Book  Google Scholar 

  6. Eldar YC. Sampling theory: beyond bandlimited systems. Cambridge University Press; 2015.

    Google Scholar 

  7. Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.

    Article  Google Scholar 

  8. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–306.

    Article  Google Scholar 

  9. Marques EC, Maciel N, Naviner L, Cai H, Yang J. A review of sparse recovery algorithms. IEEE Access. 2019;7:1300–22.

    Article  Google Scholar 

  10. Candès EJ, Eldar YC, Needell D, Randall P. Compressed sensing with coherent and redundant dictionaries. Appl Comput Harmon Anal. 2011;31(1):59–73.

    Article  Google Scholar 

  11. Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS. Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process Mag. 2020;37(1):117–27.

    Article  Google Scholar 

  12. Cohen D, Eldar YC. Sub-nyquist radar systems: temporal, spectral, and spatial compression. IEEE Signal Process Mag. 2018;35(6):35–58.

    Article  Google Scholar 

  13. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 2008;25(2):83–91.

    Article  Google Scholar 

  14. Rockstroh B, Kappes W, Walte F, Kröning M, Bessert S, Schäfer W, Schallert R, Bähr W, Joneit D, Montnacher A, et al. Ultrasonic and eddy-current inspection of rail wheels and wheel set axles. In: 17th world conference on nondestructive testing, p. 25–8, 2008.

    Google Scholar 

  15. Núñez DL, Molero-Armenta MÁ, Izquierdo MÁG, Hernández MG, Velayos JJA. Ultrasound transmission tomography for detecting and measuring cylindrical objects embedded in concrete. Sensors. 2017;17(5):1085.

    Article  Google Scholar 

  16. Yee BGW, Couchman JC. Application of ultrasound to NDE of materials. IEEE Trans Sonics Ultrasonics. 1976;23(5):299–305.

    Article  Google Scholar 

  17. Rieder H, Salzburger H-J. Alok-imaging and-reconstruction of surface defects on heavy plates with EMA-Rayleigh wave transducers. In: Review of progress in quantitative nondestructive evaluation. Springer; 1989. p. 1127–35.

    Chapter  Google Scholar 

  18. Spies M, Rieder H, Dillhöfer A, Schmitz V, Müller W. Synthetic aperture focusing and time-of-flight diffraction ultrasonic imaging – past and present. J Nondestruct Eval. 2012;31:310–23.

    Article  Google Scholar 

  19. Holmes C, Drinkwater BW, Wilcox PD. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT & E Int. 2005;38(8):701–11.

    Article  CAS  Google Scholar 

  20. Nguyen LT, Modrak RT. Ultrasonic wavefield inversion and migration in complex heterogeneous structures: 2d numerical imaging and nondestructive testing experiments. Ultrasonics. 2018;82:357–70.

    Article  Google Scholar 

  21. Boßmann F, Plonka G, Peter T, Nemitz O, Schmitte T. Sparse deconvolution methods for ultrasonic NDT. J Nondestruct Eval. 2012;31(3):225–44.

    Article  Google Scholar 

  22. Semper S, Kirchhof J, Wagner C, Krieg F, Römer F, Osman A, Del Galdo G. Defect detection from 3d ultrasonic measurements using matrix-free sparse recovery algorithms. In: 2018 26th European Signal Processing Conference (EUSIPCO), p. 1700–4, 2018.

    Google Scholar 

  23. Jiang B, Zhao W, Wang W. Improved ultrasonic computerized tomography method for STS (steel tube slab) structure based on compressive sampling algorithm. Appl Sci. 2017;7(5):432.

    Article  Google Scholar 

  24. Laroche N, Bourguignon S, Carcreff E, Idier J, Duclos A. An inverse approach for ultrasonic imaging from full matrix capture data. Application to resolution enhancement in NDT. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67:1877–87.

    Article  Google Scholar 

  25. Berthon B, Morichau-Beauchant P, Porée J, Garofalakis A, Tavitian B, Tanter M, Provost J. Spatiotemporal matrix image formation for programmable ultrasound scanners. Phys Med Biol. 2018;63(3):03NT03.

    Article  Google Scholar 

  26. Harley JB, Moura JMF. Sparse recovery of the multimodal and dispersive characteristics of lamb waves. J Acoust Soc Am. 2013;133(5):2732–45.

    Article  Google Scholar 

  27. Semper S, Kirchhof J, Wagner C, Krieg F, Römer F, Del Galdo G. Defect detection from compressed 3-D ultrasonic frequency measurements. In Proceedings of the 27th European Signal Processing Conference (EUSIPCO-2019), A Coruna, Spain, September 2019.

    Google Scholar 

  28. Kirchhof J, Semper S, Wagner C, Pérez E, Römer F, Del Galdo G. Frequency sub-sampling of ultrasound non-destructive measurements: acquisition. Reconstruct Perform. 2020. arXiv: 2012.04534.

    Google Scholar 

  29. Mulleti S, Lee K, Eldar YC. Identifiability conditions for compressive multichannel blind deconvolution. IEEE Trans Signal Process. 2020;68:4627–42.

    Article  Google Scholar 

  30. Pérez E, Kirchhof J, Semper S, Krieg F, Römer F. Total focusing method with subsampling in space and frequency domain for ultrasound NDT. In: Proceedings of the 2019 IEEE international ultrasonics symposium, Glasgow, UK, October 2019.

    Google Scholar 

  31. Pérez E, Kirchhof J, Krieg F, Römer F. Subsampling approaches for compressed sensing with ultrasound arrays in non-destructive testing. MDPI Sensors, November 2020.

    Google Scholar 

  32. Hennenfent G, Herrmann FJ. Simply denoise: Wavefield reconstruction via jittered undersampling. Geophysics. 2008;73:V19.

    Article  Google Scholar 

  33. Esfandabadi YK, De Marchi L, Testoni N, Marzani A, Masetti G. Full wavefield analysis and damage imaging through compressive sensing in lamb wave inspections. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(2):269–80.

    Article  Google Scholar 

  34. Sabeti S, Harley JB. Spatio-temporal undersampling: recovering ultrasonic guided wavefields from incomplete data with compressive sensing. Mech Syst Signal Process. 2020;140:106694.

    Article  Google Scholar 

  35. Krieg F, Kirchhof J, Kodera S, Lugin S, Ihlow A, Schwender T, Del Galdo G, Römer F, Osman A. SAFT processing for manually acquired ultrasonic measurement data with 3D smartInspect. Insight – J Br Inst Non-Destruct Test. 2019;61:663.

    Google Scholar 

  36. Chang M, Yuan S, Guo F. Corrosion monitoring using a new compressed sensing-based tomographic method. Ultrasonics. 2020;101:105988.

    Article  Google Scholar 

  37. Kruger RP. Computed tomography for inspection of industrial objects. Technical report. Los Alamos National Lab; 1980.

    Google Scholar 

  38. du Plessis A, Boshoff WP. A review of X-ray computed tomography of concrete and asphalt construction materials. Constr Build Mater. 2019;199:637–51.

    Article  Google Scholar 

  39. Thompson A, Maskery I, Leach RK. X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol. 2016;27(7):072001.

    Article  Google Scholar 

  40. Oeckl S, Gruber R, Schön W, Eberhorn M, Bauscher I, Wenzel T, Hanke R. Process integrated inspection of motor pistons using computerized tomography. In: Microelectronic systems. Springer; 2011. p. 277–86.

    Chapter  Google Scholar 

  41. Gordon R, Herman GT, Johnson SA. Image reconstruction from projections. Sci Am. 1975;233(4):56–71.

    Article  CAS  Google Scholar 

  42. Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging. 1984;6(1):8194.

    Article  Google Scholar 

  43. Magkos S, Kupsch A, Bruno G. Direct iterative reconstruction of computed tomography trajectories reconstruction from limited number of projections with DIRECTT. Rev Sci Instrum. 2020;91(10):103107.

    Article  CAS  Google Scholar 

  44. Römer F, Großmann M, Schön T, Gruber R, Jung A, Oeckl S, Del Galdo G. Differential SART for sub-Nyquist tomographic reconstruction in presence of misalignments. In 2017 25th European Signal Processing Conference (EUSIPCO), p. 2354–8. 2017.

    Google Scholar 

  45. Sidky EY, Kao C-M, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J Xray Sci Technol. 2006;14(2):119–39.

    Google Scholar 

  46. Chen G-H, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys. 2008;35(2):660–3.

    Article  Google Scholar 

  47. Schön T, Römer F, Oeckl S, Großmann M, Gruber R, Jung A, Del Galdo G. Cycle time reduction in process integrated computed tomography using compressed sensing. In: Proceedings of the 13th international meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine (Fully 3D), Newport, RI, May 2015.

    Google Scholar 

  48. Wang G, Zhang Y, Ye X, Mou X. Machine learning for tomographic imaging. IOP Publishing; 2019. p. 2053–563.

    Book  Google Scholar 

  49. Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M. Terahertz imaging: applications and perspectives. Appl Opt. 2010;49(19):E48–57.

    Article  Google Scholar 

  50. Tao YH, Fitzgerald AJ, Wallace VP. Non-contact, non-destructive testing in various industrial sectors with terahertz technology. Sensors. 2020;20(3):712.

    Article  Google Scholar 

  51. Wietzke S, Jördens C, Krumbholz N, Baudrit B, Bastian M, Koch M. Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints. J Eur Opt Soc-Rapid Publ. 2007;2. ISSN 1990-2573. Available at: http://www.jeos.org/index.php/jeos_rp/article/view/07013.

  52. Pupeza I, Wilk R, Koch M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt Express. 2007;15(7):4335–50.

    Article  CAS  Google Scholar 

  53. Yakovlev EV, Zaytsev KI, Dolganova IN, Yurchenko SO. Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy. IEEE Trans Terahertz Sci Technol. 2015;5(5):810–6.

    Article  CAS  Google Scholar 

  54. Chan WL, Moravec ML, Baraniuk RG, Mittleman DM. Terahertz imaging with compressed sensing and phase retrieval. Opt Lett. 2008;33(9):974–6.

    Article  Google Scholar 

  55. Ersoy OK. Diffraction, Fourier optics and imaging, vol. 30. Wiley; 2006.

    Google Scholar 

  56. Chan WL, Charan K, Takhar D, Kelly KF, Baraniuk RG, Mittleman DM. A single-pixel terahertz imaging system based on compressed sensing. Appl Phys Lett. 2008;93(12):121105.

    Article  Google Scholar 

  57. Shen H, Newman N, Gan L, Zhong S, Huang Y, Shen Y-C. Compressed terahertz imaging system using a spin disk. In: 35th international conference on infrared, millimeter, and terahertz waves. IEEE; 2010. p. 1–2.

    Google Scholar 

  58. Stantchev RI, Phillips DB, Hobson P, Hornett SM, Padgett MJ, Hendry E. Compressed sensing with near-field THz radiation. Optica. 2017;4(8):989–92.

    Article  CAS  Google Scholar 

  59. Palka N, Miedzinska D. Detailed non-destructive evaluation of UHMWPE composites in the terahertz range. Opt Quant Electron. 2014;46(4):515–25.

    Article  CAS  Google Scholar 

  60. Cristofani E, Friederich F, Wohnsiedler S, Matheis C, Jonuscheit J, Vandewal M, Beigang R. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Opt Eng. 2014;53(3):031211.

    Article  Google Scholar 

  61. Mamrashev A, Minakov F, Maximov L, Nikolaev N, Chapovsky P. Correction of optical delay line errors in terahertz time-domain spectroscopy. Electronics. 2019;8(12):1408.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fraunhofer Internal Programs under Grant No. Attract 025-601128 as well as the German research foundation (DFG) under grant number GA 2062/5-1 “CoSMaDU.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Römer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Römer, F., Kirchhof, J., Krieg, F., Pérez, E. (2022). Compressed Sensing: From Big Data to Relevant Data. In: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Springer, Cham. https://doi.org/10.1007/978-3-030-73206-6_50

Download citation

Publish with us

Policies and ethics