Skip to main content

Population Variation of the Human Genome

  • Chapter
  • First Online:
Human Genome Structure, Function and Clinical Considerations
  • Genes cited in this chapter: ACE (Angiotensin I-Converting Enzyme); ACE2 (Angiotensin-Converting Enzyme 2); ASPM (Assembly Factor for Spindle Microtubules); CCR5 (C-C motif chemokine Receptor 5); FOXP2 (Forkhead box P2); FURIN (Furin paired basic amino acid cleaving enzyme); IL12RB1 (Interleukin 12 Receptor subunit Beta 1); LCT (Lactase); MCPH1 (Microcephalin 1); PDE10A (Phosphodiesterase 10A); TMPRSS2 (Transmembrane serine protease 2); TYK2 (Tyrosine Kinase 2).

Abstract

The human genome is the source of all genotypes and inherited phenotypes, including innumerous genetic disorders found throughout different populations worldwide. Much of the variation found today in Homo sapiens was accumulated during a long period of indigenous diversification of our species, in the course of the “natural” settling of all continents in the past 200,000 years. Further variation has been summed up much more recently, since 1492, with an increasing process of intercontinental gene flow towards the modern and globalized cities and countries. This chapter focus on describing the genomewide variation today represented in about 8 billion individuals of our species, and its implication in phenotypes and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994;368:455–7.

    Article  CAS  PubMed  Google Scholar 

  2. Bergström A, McCarthy SA, Hui R, et al. Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367:6484.

    Article  CAS  Google Scholar 

  3. Lander E, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  4. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.

    Article  CAS  PubMed  Google Scholar 

  5. International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  CAS  Google Scholar 

  6. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061.

    Article  PubMed Central  CAS  Google Scholar 

  7. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

    Article  CAS  PubMed Central  Google Scholar 

  8. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  CAS  Google Scholar 

  9. Brookes A, Robinson P. Human genotype–phenotype databases: aims, challenges and opportunities. Nat Rev Genet. 2015;16:702–15. https://doi.org/10.1038/nrg3932.

    Article  CAS  PubMed  Google Scholar 

  10. Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21:171–89. https://doi.org/10.1038/s41576-019-0180-9.

    Article  CAS  PubMed  Google Scholar 

  11. Prado-Martinez J, Sudmant PH, Kidd JM, et al. Great ape genetic diversity and population history. Nature. 2013;499:471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stringer C. The origin and evolution of Homo sapiens. Philos Trans R Soc B. 2016;371:20150237. https://doi.org/10.1098/rstb.2015.0237.

    Article  Google Scholar 

  13. Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S, Meyerson OS, Underwood JG, Nelson BJ, Chaisson MJP, Dougherty ML, Munson KM, Hastie AR, Diekhans M, Hormozdiari F, Lorusso N, Hoekzema K, Qiu R, Clark K, Raja A, Welch AE, Sorensen M, Baker C, Fulton RS, Armstrong J, Graves-Lindsay TA, Denli AM, Hoppe ER, Hsieh P, Hill CM, Pang AWC, Lee J, Lam ET, Dutcher SK, Gage FH, Warren WC, Shendure J, Haussler D, Schneider VA, Cao H, Ventura M, Wilson RK, Paten B, Pollen A, Eichler EE. High-resolution comparative analysis of great ape genomes. Science. 2018;360:eaar6343. https://doi.org/10.1126/science.aar6343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azevedo L, Serrano C, Amorim A, et al. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics. 2015;9:21. https://doi.org/10.1186/s40246-015-0043-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grabowski M, Jungers WL. Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes. Nat Commun. 2017;8:880. https://doi.org/10.1038/s41467-017-00997-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fisher SE. Human genetics: the evolving story of FOXP2. Curr Biol. 2019;29:R65–7. https://doi.org/10.1016/j.cub.2018.11.047.

    Article  CAS  PubMed  Google Scholar 

  17. Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol. 2011;28:625–38. https://doi.org/10.1093/molbev/msq237.

    Article  CAS  PubMed  Google Scholar 

  18. Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep. 2019;9:8463. https://doi.org/10.1038/s41598-019-44877-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pinotti T, Bergström A, Geppert M, Bawn M, Ohasi D, Shi W, Lacerda DR, Solli A, Norstedt J, Reed K, Dawtry K, González-Andrade F, Paz-Y-Miño C, Revollo S, Cuellar C, Jota MS, Santos JE, Ayub Q, Kivisild T, Sandoval JR, Fujita R, Xue Y, Roewer L, Santos FR, Tyler-Smith C. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of native American founders. Curr Biol. 2019;29:149–57.

    Article  CAS  PubMed  Google Scholar 

  20. Tylén K, Fusaroli R, Rojo S, Heimann K, Fay N, Johannsen NN, Riede F, Lombard M. The evolution of early symbolic behavior in Homo sapiens. Proc Natl Acad Sci U S A. 2020;117:4578–84. https://doi.org/10.1073/pnas.1910880117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol. 2019;17(1):98. https://doi.org/10.1186/s12915-019-0724-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piperno DR. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research. Proc Natl Acad Sci U S A. 2017;114:6429–37. https://doi.org/10.1073/pnas.1703658114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diamond J, Bellwood P. Farmer and their languages: the first expansions. Science. 2003;300:597–603.

    Article  CAS  PubMed  Google Scholar 

  24. Hellenthal G, Busby GB, Band G, Wilson JF, Capelli C, Falush D, et al. A genetic atlas of human admixture history. Science. 2014;343:747–51. https://doi.org/10.1126/science.1243518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E. Tracing the peopling of the world through genomics. Nature. 2017;541:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willerslev E, Cooper A. Ancient DNA. Proc Royal Soc B: Biol Sci. 2005;272:3–16.

    Article  CAS  Google Scholar 

  27. Allentoft M, Sikora M, Sjögren K-G, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–72.

    Article  CAS  PubMed  Google Scholar 

  28. Haak W, Lazaridis I, Patterson N, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lazaridis I, Patterson N, Mittnik A, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olalde I, Mallick S, Patterson N, et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science. 2019;363:1230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McColl H, Racimo F, Vinner L, et al. The prehistoric peopling of Southeast Asia. Science. 2018;361:88–92.

    Article  CAS  PubMed  Google Scholar 

  32. Damgaard PB, Martiniano R, Kamm J, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:6396.

    Google Scholar 

  33. Lazaridis I, Nadel D, Rollefson G, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sikora M, Pitulko VV, Sousa VC, et al. The population history of northeastern Siberia since the Pleistocene. Nature. 2019;570:182–8.

    Article  CAS  PubMed  Google Scholar 

  35. Haber M, Mezzavilla M, Xue Y, Tyler-Smith C. Ancient DNA and the rewriting of human history: be sparing with Occam’s razor. Genome Biol. 2016;17:1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Prohaska A, Racimo F, Schork AJ, Sikora M, Stern AJ, Ilardo M, Allentoft ME, Folkersen L, Buil A, Moreno-Mayar JV, Korneliussen T, Geschwind D, Ingason A, Werge T, Nielsen R, Willerslev E. Human disease variation in the light of population genomics. Cell. 2019;177:115–31.

    Article  CAS  PubMed  Google Scholar 

  37. Hellwege JN, Keaton JM, Giri A, Gao X, Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95:1.22.1–1.22.23. https://doi.org/10.1002/cphg.48.

    Article  Google Scholar 

  38. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet. 1999;65:220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alves-Silva J, Santos MSS, Guimarães PEM, Ferreira ACS, Bandelt H-J, Pena SDJ, Prado VF. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet. 2000;67:444–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carvajal-Carmona LG, Soto ID, Pineda N, Ortíz-Barrientos D, Duque C, Ospina-Duque J, McCarthy M, Montoya P, Alvarez VM, Bedoya G, Ruiz-Linares A. Strong Amerind/White Sex Bias and a possible Sephardic contribution among the founders of a population in Northwest Colombia. Am J Hum Genet. 2000;67:1287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carvalho-Silva DR, Santos FR, Rocha J, Pena SDJ. The phylogeography of Brazilian Y-chromosome lineages. Am J Hum Genet. 2001;68:281–6.

    Article  CAS  PubMed  Google Scholar 

  42. Mendizabal I, Sandoval K, Berniell-Lee G, Calafell F, Salas A, Martínez-Fuentes A, Comas D. Genetic origin, admixture, and asymmetry in maternal and paternal human lineages in Cuba. BMC Evol Biol. 2008;8:213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Moreno-Mayar JV, Vinner V, Damgaard PB, et al. Early human dispersals within the Americas. Science. 2018;362:6419.

    Article  CAS  Google Scholar 

  44. Posth C, Nakatsuka N, Lazaridis I, et al. Reconstructing the deep population history of Central and South America. Cell. 2018;175:1185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Denevan WM. The pristine myth: the landscape of the Americas 1492. Ann Am Geographers. 1992;82:369–85.

    Article  Google Scholar 

  46. Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prüfer K, et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 2017;35:655–8.

    Article  CAS  Google Scholar 

  48. de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, Hernandez-Rodriguez J, Dupanloup I, Lao O, Hallast P, Schmidt JM, Heredia-Genestar JM, Benazzo A, Barbujani G, Peter BM, Kuderna LFK, Casals F, Angedakin S, Arandjelovic M, Boesch C, Kühl H, Vigilant L, Langergraber K, Novembre J, Gut M, Gut I, Navarro A, Carlsen F, Andrés AM, Siegismund HR, Scally A, Excoffier L, Tyler-Smith C, Castellano S, Xue Y, Hvilsom C, Marques-Bonet T. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science. 2016;354:477–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Meyer M, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;328:222–6.

    Article  CAS  Google Scholar 

  50. Reich D, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Durvasula A, Sankararaman S. Recovering signals of ghost archaic introgression in African populations. Sci Adv. 2020;6(7):eaax5097. https://doi.org/10.1126/sciadv.aax5097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hammer MF, Woerner AE, Mendez FL, Watkins JC, Wall JD. Genetic evidence for archaic admixture in Africa. Proc Natl Acad Sci U S A. 2011;108:15123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harris K, Nielsen R. The genetic cost of Neanderthal introgression. Genetics. 2016;203:881–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khrameeva EE, Bozek Z, He L, Yan Z, Jiang X, Wei Y, Tang K, Gelfand MS, Prüfer K, Kelso J, Pääbo S, Giavalisco P, Lachmann M, Khaitovich P. Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat Commun. 2014;5:1–8.

    Article  CAS  Google Scholar 

  55. Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K, Gragert L, Babrzadeh F, Gharizadeh B, Luo M, Plummer FA, Kimani J, Carrington M, Middleton D, Rajalingam R, Beksac M, Marsh SG, Maiers M, Guethlein LA, Tavoularis S, Little AM, Green RE, Norman PJ, Parham P. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science. 2011;334:89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Almarri MA, Bergström A, Prado-Martinez J, Yang F, Fu B, Dunham AS, Chen Y, Hurles ME, Tyler-Smith C, Xue Y. Population structure, stratification, and introgression of human structural variation. Cell. 2020;182:189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dannemann M, Andrés AM, Kelso J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am J Hum Genet. 2016;98:22–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deschamps M, Laval G, Fagny M, Itan Y, Abel L, Casanova J-L, Patin E, Quintana-Murci L. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am J Hum Genet. 2016;98:5–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quach H, Rotival M, Pothlichet J, Loh Y-HE, Dannemann M, Zidane N, Laval G, Patin E, Harmant C, Lopez M, et al. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell. 2016;167:643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vernot B, Akey JM. Resurrecting surviving Neandertal lineages from modern human genomes. Science. 2014;343:1017–21.

    Article  CAS  PubMed  Google Scholar 

  61. Dannemann M, Kelso J. The contribution of Neanderthals to phenotypic variation in modern humans. Am J Hum Genet. 2017;101:578–89. https://doi.org/10.1016/j.ajhg.2017.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arciero E, Kraaijenbrink T, Asan HM, Mezzavilla M, Ayub Q, Wang W, Pingcuo Z, Yang H, Wang J, Jobling MA, van Driem G, Xue Y, de Knijff P, Tyler-Smith C. Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. Mol Biol Evol. 2018;35:1916–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang, Luosang J, Cuo ZXP, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang L, Wang J, Nielsen R. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512:194–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Racimo F, Gokhman D, Fumagalli M, Ko A, Hansen T, Moltke I, Albrechtsen A, Carmel L, Huerta-Sánchez E, Nielsen R. Archaic adaptive introgression in TBX15/WARS2. Mol Biol Evol. 2017;34:509–24.

    CAS  PubMed  Google Scholar 

  65. Gittelman RM, Schraiber JG, Vernot B, Mikacenic C, Wurfel MM, Akey JM. Archaic hominin admixture facilitated adaptation to out-of-Africa environments. Curr Biol. 2016;26:3375–82. https://doi.org/10.1016/j.cub.2016.10.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rinker DC, Simonti CN, McArthur E, Shaw D, Hodges E, Capra JA. Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian populations. Nat Ecol Evol. 2020; https://doi.org/10.1038/s41559-020-1261-z.

  67. Sankararaman S, Mallick S, Patterson N, Reich D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr Biol. 2016;26:1241–7. https://doi.org/10.1016/j.cub.2016.03.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Simonti CN, Vernot B, Bastarache L, Bottinger E, Carrell DS, Chisholm RL, Crosslin DR, Hebbring SJ, Jarvik GP, Kullo IJ, Li R, Pathak J, Ritchie MD, Roden DM, Verma SS, Tromp G, Prato JD, Bush WS, Akey JM, Denny JC, Capra JA. The phenotypic legacy of admixture between modern humans and Neandertals. Science. 2016;351:737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020;587(7835):610–2. https://doi.org/10.1038/s41586-020-2818-3.

    Article  CAS  PubMed  Google Scholar 

  70. Skov L, Maciá MC, Svelnbjörnsson G, Mafessoni F, Lucotte EA, Einarsdóttir MS, Jonsson H, Haldorsson B, Gudbjartsson DF, Helgason A, Schierup MH, Stefansson K. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature. 2020;582:78–83.

    Article  CAS  PubMed  Google Scholar 

  71. Dannemann M, Racimo F. Something old, something borrowed: admixture and adaptation in human evolution. Curr Opin Genet Dev. 2018;53:1–8.

    Article  CAS  PubMed  Google Scholar 

  72. Barth F. Ethnic groups and boundaries. The social organization of culture difference. Oslo: Universitetforlaget; 1969.

    Google Scholar 

  73. Carneiro da Cunha M. Etnicidade: da cultura residual mas irredutível. Revista de Cultura e Política. 1986;1:35–9.

    Google Scholar 

  74. Fan S, Hansen ME, Lo Y, Tishkoff SA. Going global by adapting local: a review of recent human adaptation. Science. 2016;354:54–9. https://doi.org/10.1126/science.aaf5098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, Golan D, Yengo L, Rocheleau G, Froguel P, McCarthy MI, Pritchard JK. Detection of human adaptation during the past 2000 years. Science. 2016;354:760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, Rhodes M, Reich DE, Hirschhorn JN. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004;74:1111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Järvelä I. Identification of a variant associated with adult-type hypolactasia. Nat Genet. 2002;30:233–7.

    Article  CAS  PubMed  Google Scholar 

  78. Gamba C, Jones ER, Teasdale MD, et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun. 2014;5:5257.

    Article  CAS  PubMed  Google Scholar 

  79. Jones BL, Raga TO, Liebert A, Zmarz P, Bekele E, Danielsen ET, Olsen AK, Bradman N, Troelsen JT, Swallow DM. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep. Am J Hum Genet. 2013;93:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Macholdt E, Lede V, Barbieri C, Mpoloka SW, Chen H, Slatkin M, Pakendorf B, Stoneking M. Tracing pastoralist migrations to Southern Africa with lactase persistence alleles. Curr Biol. 2014;24:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tishkoff SA, Reed FA, Ranciaro A, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39:31–40.

    Article  CAS  PubMed  Google Scholar 

  82. Ilardo MA, Moltke I, Korneliussen TS, et al. Physiological and genetic adaptations to diving in Sea Nomads. Cell. 2018;173:569–580.e15. https://doi.org/10.1016/j.cell.2018.03.054.

    Article  CAS  PubMed  Google Scholar 

  83. Beall CM. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Compar Biol. 2006;46:18–24. https://doi.org/10.1093/icb/icj004.

    Article  Google Scholar 

  84. Witt KE, Huerta-Sánchez E. Convergent evolution in human and domesticate adaptation to high-altitude environments. Philos Trans R Soc B. 2019;374:20180235. https://doi.org/10.1098/rstb.2018.0235.

    Article  CAS  Google Scholar 

  85. Norris ET, Wang L, Conley AB, Rishishwar L, Mariño-Ramírez L, Valderrama-Aguirre A, Jordan IK. Genetic ancestry, admixture and health determinants in Latin America. BMC Genomics. 2018;19:861. https://doi.org/10.1186/s12864-018-5195-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Quintana-Murci L. Understanding rare and common diseases in the context of human evolution. Genome Biol. 2016;7:225.

    Article  Google Scholar 

  87. Jordan IK. The Columbian exchange as a source of adaptive introgression in human populations. Biol Direct. 2016;11:17. https://doi.org/10.1186/s13062-016-0121-x.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Skotte L, Jørsboe E, Korneliussen TS, Moltke I, Albrechtsen A. Ancestry-specific association mapping in admixed populations. Genet Epidemiol. 2019;43:506–21. https://doi.org/10.1002/gepi.22200.

    Article  PubMed  Google Scholar 

  89. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306:234–8.

    Article  CAS  PubMed  Google Scholar 

  90. Hitomi Y, Tokunaga K. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93:657–76. https://doi.org/10.2183/pjab.93.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, Ward LD, Birney E, Crawford GE, Dekker J, Dunham I, Elnitski LL, Farnham PJ, Feingold EA, Gerstein M, Giddings MC, Gilbert DM, Gingeras TR, Green ED, Guigo R, Hubbard T, Kent J, Lieb JD, Myers RM, Pazin MJ, Ren B, Stamatoyannopoulos JA, Weng Z, White KP, Hardison RC. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014;111:6131–8. https://doi.org/10.1073/pnas.1318948111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ott J, Wang J, Leal SM. Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet. 2015;16:275–84. https://doi.org/10.1038/nrg3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pogue RE, Cavalcanti DP, Shanker S, Andrade RV, Aguiar LR, de Carvalho JL, Costa FF. Rare genetic diseases: update on diagnosis, treatment and online resources. Drug Discov Today. 2017;23:187–95. https://doi.org/10.1016/j.drudis.2017.11.002.

    Article  PubMed  Google Scholar 

  94. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13:565–75. https://doi.org/10.1038/nrg3241.

    Article  CAS  PubMed  Google Scholar 

  95. Chapman S, Hill A. Human genetic susceptibility to infectious disease. Nat Rev Genet. 2012;13:175–88. https://doi.org/10.1038/nrg3114.

    Article  CAS  PubMed  Google Scholar 

  96. Klebanov N. Genetic Predisposition to Infectious Disease. Cureus. 2018;10:e3210. https://doi.org/10.7759/cureus.3210.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Faria NR, Rambaut A, Suchard MA, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346:56–61. https://doi.org/10.1126/science.1256739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Solloch UV, Lang K, Lange V, Böhme I, Schmidt AH, Sauter J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol. 2017;78:710–7.

    Article  CAS  PubMed  Google Scholar 

  99. Słomiński B, Tawrynowicz U, Ryba-Stanisławowska M, Skrzypkowska M, Myśliwska J, Myśliwiec M. CCR5-Δ32 polymorphism is a genetic risk factor associated with dyslipidemia in patients with type 1 diabetes. Cytokine. 2019;114:81–5. https://doi.org/10.1016/j.cyto.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  100. Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288:192–206. https://doi.org/10.1111/joim.13091.

    Article  CAS  PubMed  Google Scholar 

  101. The COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet. 2020;28:715–8. https://doi.org/10.1038/s41431-020-0636-6.

    Article  CAS  PubMed Central  Google Scholar 

  102. Ortiz-Fernández L, Sawalha AH. Genetic variability in the expression of the SARS-CoV-2 host cell entry factors across populations. Genes Immunol. 2020;21:269–72. https://doi.org/10.1038/s41435-020-0107-7.

    Article  CAS  Google Scholar 

  103. Torre-Fuentes L, Matías-Guiu J, Hernández-Lorenzo L, et al. ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid. Spain J Med Virol. 2020;93(2):863–9. https://doi.org/10.1002/jmv.26319.

    Article  CAS  PubMed  Google Scholar 

  104. Shang J, Wan Y, Luo C, Ye G, Geng Q, Li F. Cell entry mechanisms of SARS-CoV-2. PNAS. 2020;117:11727–34. https://doi.org/10.1073/pnas.2003138117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Delanghe JR, Speeckaert MM, De Buyzere ML. ACE polymorphism and COVID-19 outcome. Endocrine. 2020;70:13–4. https://doi.org/10.1007/s12020-020-02454-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, Thompson RF. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94:e00510–20. https://doi.org/10.1128/JVI.00510-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. The Severe COVID-19 GWAS Group. Genomewide association study of severe covid-19 with respiratory failure. N Engl J Med. 2020; https://doi.org/10.1056/NEJMoa2020283.

  108. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanders M, van Well G, Ouburg S, et al. Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun. 2011;12:321–34. https://doi.org/10.1038/gene.2011.20.

    Article  CAS  PubMed  Google Scholar 

  110. Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum Genet. 2020;139:1001–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, Patin E, Quintana-Murci L, Boisson-Dupuis S, Casanova JL, Abel L. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A. 2019;116:10430–4. https://doi.org/10.1073/pnas.1903561116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18:76. https://doi.org/10.1186/s13059-017-1207-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mack SJ, Cano P, Hollenbach JA, He J, Hurley CK, Middleton D, Moraes ME, Pereira SE, Kempenich JH, Reed EF, Setterholm M, Smith AG, Tilanus MG, Torres M, Varney MD, Voorter CE, Fischer GF, Fleischhauer K, Goodridge D, Klitz W, Little AM, Maiers M, Marsh SG, Müller CR, Noreen H, Rozemuller EH, Sanchez-Mazas A, Senitzer D, Trachtenberg E, Fernandez-Vina M. Common and well-documented HLA alleles: 2012 update to the CWD catalogue. Tissue Antigens. 2013;81:194–203. https://doi.org/10.1111/tan.12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boehm BO, Manfras B, Rosak C, Schöffling K, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain is protective against future development of insulin-dependent (type 1) diabetes mellitus. Klin Wochenschr. 1991;69:146–50. https://doi.org/10.1007/BF01665854.

    Article  CAS  PubMed  Google Scholar 

  115. Reinauer C, Rosenbauer J, Bächle C, et al. The clinical course of patients with preschool manifestation of type 1 diabetes is independent of the HLA DR-DQ genotype [published correction appears in Genes (Basel)]. Genes. 2018;8(5):146. https://doi.org/10.3390/genes8050146.

    Article  CAS  Google Scholar 

  116. Liston A, Carr EJ, Linterman MA. Shaping variation in the human immune system. Trends Immunol. 2016;37:637–46. https://doi.org/10.1016/j.it.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  117. La Ruche G, Tarantola A, Barboza P, Vaillant L, Gueguen J, Gastellu-Etchegorry M, for the epidemic intelligence team at InVS. The 2009 pandemic H1N1 influenza and indigenous populations of the Americas and the Pacific. Euro Surveill. 2009;14:19366.

    Article  PubMed  Google Scholar 

  118. Cardoso AM, Resende PC, Paixao ES, et al. Investigation of an outbreak of acute respiratory disease in an indigenous village in Brazil: Contribution of Influenza A(H1N1)pdm09 and human respiratory syncytial viruses. PLoS One. 2019;14:e0218925. https://doi.org/10.1371/journal.pone.0218925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Flint SM, Davis JS, Su JY, Oliver-Landry EP, Rogers BA, Goldstein A, et al. Disproportionate impact of pandemic (H1N1) 2009 influenza on Indigenous people in the Top End of Australia’s Northern Territory. Med J Aust. 2010;192:617–22.

    Article  PubMed  Google Scholar 

  120. Trauer JM, Laurie KL, McDonnell J, Kelso A, Markey PG. Differential effects of pandemic (H1N1) 2009 on remote and indigenous groups, Northern Territory, Australia, 2009. Emerg Infect Dis. 2011;17:1615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pollock SL, Sagan M, Oakley L, Fontaine J, Poffenroth L. Investigation of a pandemic H1N1 influenza outbreak in a remote First Nations community in northern Manitoba, 2009. Can J Public Health. 2012;103:90–3.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Henn BM, Cavalli-Sforza LL, Feldman MW. The great human expansion. Proc Natl Acad Sci U S A. 2012;109:17758–64. https://doi.org/10.1073/pnas.1212380109.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zink F, Magnusdottir DN, Magnusson OT, et al. Insights into imprinting from parent-of-origin phased methylomes and transcriptomes. Nat Genet. 2018;50:1542–52. https://doi.org/10.1038/s41588-018-0232-7.

    Article  CAS  PubMed  Google Scholar 

  124. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99. https://doi.org/10.1038/s41586-019-1411-0.

    Article  CAS  PubMed  Google Scholar 

  125. Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics. Nat Rev Genet. 2017;18:51–66. https://doi.org/10.1038/nrg.2016.138.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício R. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, F.R., Pinotti, T., Fujita, R. (2021). Population Variation of the Human Genome. In: Haddad, L.A. (eds) Human Genome Structure, Function and Clinical Considerations. Springer, Cham. https://doi.org/10.1007/978-3-030-73151-9_11

Download citation

Publish with us

Policies and ethics