Skip to main content

Prediction of Sudden Cardiac Death Using Ensemble Classifiers

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1364))

Included in the following conference series:

Abstract

Sudden Cardiac Death (SCD) is a medical problem that is responsible for over 300,000 deaths per year in the United States and millions worldwide. SCD is defined as death occurring from within one hour of the onset of acute symptoms, an unwitnessed death in the absence of pre-existing progressive circulatory failures or other causes of deaths, or death during attempted resuscitation. Sudden death due to cardiac reasons is a leading cause of death among Congestive Heart Failure (CHF) patients. The use of Electronic Medical Records (EMR) systems has made a wealth of medical data available for research and analysis. Supervised machine learning methods have been successfully used for medical diagnosis. Ensemble classifiers are known to achieve better prediction accuracy than its constituent base classifiers. In an effort to understand the factors contributing to SCD, data on 2,521 patients were collected for the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). The data included 96 features that were gathered over a period of 5 years. The goal of this work was to develop a model that could accurately predict SCD based on available features. The prediction model used the Cox proportional hazards model as a score and then used the ExtraTreesClassifier algorithm as a boosting mechanism to create the ensemble. We tested the system at prediction point of 180 days. Our best results were at 180-days with accuracy of 0.9624, specificity of 0.9915, and F1 score of 0.9607.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebrahimzadeh, E., Pooyan, M., Bijar, A.: A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0081896

    Article  Google Scholar 

  2. Murukesan, L., Murugappan, M., Iqbal, M.: Sudden cardiac death prediction using ECG signal derivative (Heart Rate Variability): a review. 2013 IEEE 9th international colloquium on signal processing and its applications. (2013) https://doi.org/10.1109/cspa.2013.6530054

  3. Murukesan, L., Murugappan, M., Iqbal, M., Saravanan, K.: Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J. Med. Imaging Health Inf. 4, 521–532 (2014)

    Article  Google Scholar 

  4. Ayesta, A., Martínez-Sellés, H., Bayés de Luna, A., Martínez-Sellés, M.: Prediction of sudden death in elderly patients with heart failure. J. Geriatr. Cardiol. JGC 15, 185–192 (2018)

    Google Scholar 

  5. Devi, R., Tyagi, H.K., Kumar, D.: Heart rate variability analysis for early stage prediction of sudden cardiac death. World Acad. Sci. Eng. Technol. 10, 432–435 (2016)

    Google Scholar 

  6. Deyell, M.W., Krahn, A.D., Goldberger, J.J.: Sudden cardiac death risk stratification. Circ. Res. 116, 1907–1918 (2015)

    Article  Google Scholar 

  7. Omahony, C., Jichi, F., Pavlou, M., et al.: A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD). Eur. Heart J. 35, 2010–2020 (2013)

    Article  Google Scholar 

  8. Pascual-Figal, D.A., Ordoñez-Llanos, J., Tornel, P.L., Vázquez, R., Puig, T., Valdés, M., Cinca, J., Luna, A.B.D., Bayes-Genis, A.: Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 54, 2174–2179 (2009)

    Article  Google Scholar 

  9. Ramírez, J., Orini, M., Mincholé, A., Monasterio, V., Cygankiewicz, I., Luna, A.B.D., Martínez, J.P., Pueyo, E., Laguna, P.: T-wave morphology restitution predicts sudden cardiac death in patients with chronic heart failure. J. Am. Heart Assoc. (2017). https://doi.org/10.1161/jaha.116.005310

    Article  Google Scholar 

  10. Shiga, T., Kohro, T., Yamasaki, H., Aonuma, K., Suzuki, A., Ogawa, H., Hagiwara, N., Yamazaki, T., Nagai, R., Kasanuki, H.: Body mass index and sudden cardiac death in Japanese patients after acute myocardial infarction: data from the JCAD study and HIJAMI-II registry. J. Am. Heart Assoc. (2018). https://doi.org/10.1161/jaha.118.008633

    Article  Google Scholar 

  11. Bardy, G.H., Lee, K.L., Mark, D.B., et al.: Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005)

    Article  Google Scholar 

  12. Heart Failure. https://medlineplus.gov/heartfailure.html Accessed 4 Aug 2020

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  14. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier Systems Lecture Notes in Computer Science, pp.1–15. Springer, Berlin (2000)

    Google Scholar 

  15. Therneau, T., Crowson, C., Atkinson, E.: Using time dependent covariates and time dependent coefficients in the cox model. Survival Vignettes (2017)

    Google Scholar 

  16. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  Google Scholar 

  17. Huikuri, H.V., Mäkikallio, T.H., Raatikainen, M.J.P., Perkiömäki, J., Castellanos, A., Myerburg, R.J.: Prediction of sudden cardiac death. Circulation 108, 110–115 (2003)

    Article  Google Scholar 

  18. Shen, T.-W., Shen, H.-P., Lin, C.-H., Ou, Y.-L.: Detection and prediction of sudden cardiac death (SCD) for personal healthcare. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007). https://doi.org/10.1109/iembs.2007.4352855

  19. Piccini, J.P., Zhang, M., Pieper, K., Solomon, S.D., Al-Khatib, S.M., Werf, F.V.D., Pfeffer, M.A., Mcmurray, J.J., Califf, R.M., Velazquez, E.J.: Predictors of sudden cardiac death change with time after myocardial infarction: results from the VALIANT trial. Eur. Heart J. 31, 211–221 (2009)

    Article  Google Scholar 

  20. Liew, R.: Electrocardiogram-based predictors of sudden cardiac death in patients with coronary artery disease. Clin. Cardiol. 34, 466–473 (2011)

    Article  Google Scholar 

  21. Stecker, E.C., Chugh, S.S.: Prediction of sudden cardiac death: next steps in pursuit of effective methodology. J. Intervent. Card. Electrophysiol. 31, 101–107 (2011)

    Article  Google Scholar 

  22. Vadakkumpadan, F., Trayanova, N., Younes, L., Wu, K.C.: Left-ventricular shape analysis for predicting sudden cardiac death risk. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2012). https://doi.org/10.1109/embc.2012.6346860

  23. Shastri, S., Tangri, N., Tighiouart, H., et al.: Predictors of sudden cardiac death: a competing risk approach in the hemodialysis study. Clin. J. Am. Soc. Nephrol. 7, 123–130 (2011)

    Article  Google Scholar 

  24. Sheela, C.J., Vanitha, L.: Prediction of sudden cardiac death using support vector machine. In: 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (2014). https://doi.org/10.1109/iccpct.2014.7054771

  25. Iglesias, D.G., Gutiérrez, N.R., Cos, F.D., Calvo, D.: Analysis of the high-frequency content in human QRS complexes by the continuous wavelet transform: an automatized analysis for the prediction of sudden cardiac death. Sensors 18, 560 (2018)

    Article  Google Scholar 

  26. Vanitha, L., Suresh, G.R., Jenefarsheela, C.: Sudden cardiac death prediction system using hybrid classifier. In: 2014 International Conference on Electronics and Communication Systems (ICECS) (2014). https://doi.org/10.1109/ecs.2014.6892677

  27. Fan, X., Hua, W., Xu, Y., Ding, L., Niu, H., Chen, K., Xu, B., Zhang, S.: Incidence and predictors of sudden cardiac death in patients with reduced left ventricular ejection fraction after myocardial infarction in an era of revascularisation. Heart 100, 1242–1249 (2014)

    Article  Google Scholar 

  28. Wellens, H.J.J., Schwartz, P.J., Lindemans, F.W., et al.: Risk stratification for sudden cardiac death: current status and challenges for the future. Eur. Heart J. 35, 1642–1651 (2014)

    Article  Google Scholar 

  29. Adabag, S., Rector, T.S., Anand, I.S., Mcmurray, J.J., Zile, M., Komajda, M., Mckelvie, R.S., Massie, B., Carson, P.E.: A prediction model for sudden cardiac death in patients with heart failure and preserved ejection fraction. Eur. J. Heart Fail. 16, 1175–1182 (2014)

    Article  Google Scholar 

  30. Deo, R., Norby, F.L., Katz, R., et al.: Development and validation of a sudden cardiac death prediction model for the general population. Circulation 134, 806–816 (2016)

    Article  Google Scholar 

  31. Lee, H., Shin, S.-Y., Seo, M., Nam, G.-B., Joo, S.: Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci. Rep. (2016). https://doi.org/10.1038/srep32390

    Article  Google Scholar 

  32. Weeks, P.A., Sieg, A., Gass, J.A., Rajapreyar, I.: The role of pharmacotherapy in the prevention of sudden cardiac death in patients with heart failure. Heart Fail. Rev. 21, 415–431 (2016)

    Article  Google Scholar 

  33. Ramírez, J., Orini, M., Pueyo, E., Laguna, P.: Comparison of ECG T-wave duration and morphology restitution markers for sudden cardiac death prediction in chronic heart failure. In: 2017 Computing in Cardiology Conference (CinC) (2017). https://doi.org/10.22489/cinc.2017.224-267

  34. Desai, M.Y., Smedira, N.G., Dhillon, A., Masri, A., Wazni, O., Kanj, M., Sato, K., Thamilarasan, M., Popovic, Z.B., Lever, H.M.: Prediction of sudden death risk in obstructive hypertrophic cardiomyopathy: potential for refinement of current criteria. J. Thorac. Cardiovasc. Surg. (2018). https://doi.org/10.1016/j.jtcvs.2018.03.150

    Article  Google Scholar 

  35. Hypertrophic cardiomyopathy. In: Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/hypertrophic-cardiomyopathy/symptoms-causes/syc-20350198 (2020). Accessed 15 Aug 2020

  36. Mohanty, M., Sahoo, S., Biswal, P., Sabut, S.: Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier. Biomed. Signal Process. Control 44, 200–208 (2018)

    Article  Google Scholar 

  37. Su, Y., Xia, M., Cao, J., Gao, Q.: Cardiac characteristics in the premature ventricular contraction patients with or without ventricular tachycardia. J. Clin. Exp. Med. 11, 6106–6112 (2018)

    Google Scholar 

  38. Ng, G.A., Mistry, A., Li, X., Schlindwein, F.S., Nicolson, W.B.: LifeMap: towards the development of a new technology in sudden cardiac death risk stratification for clinical use. EP Eur. (2018). https://doi.org/10.1093/europace/euy080

    Article  Google Scholar 

  39. Rosset, S., Domingo, A.M., Asimaki, A., Graf, D., Metzger, J., Schwitter, J., Rotman, S., Pruvot, E.: Reduced desmoplakin immunofluorescence signal in arrhythmogenic cardiomyopathy with epicardial right ventricular outflow tract tachycardia. HeartRhythm Case Rep. 5, 57–62 (2019)

    Article  Google Scholar 

  40. Thomsen, M.B., Nielsen, M.S., Aarup, A., Bisgaard, L.S., Pedersen, T.X.: Uremia increases QRS duration after β-adrenergic stimulation in mice. Physiol. Rep. (2018). https://doi.org/10.14814/phy2.13720

    Article  Google Scholar 

  41. Özyılmaz, S., Satılmışoğlu, M.H., Gül, M., Uyarel, H., Serdar, O.A.: Assessment of the association between serum uric acid level and the predicted risk score of sudden cardiac death at five years in patients with hypertrophic cardiomyopathy. Turk Kardiyol. Dern. Ars. 46, 111–120 (2018)

    Google Scholar 

  42. Ebrahimzadeh, E., Fayaz, F., Ahmadi, F., Dolatabad, M.R.: Linear and nonlinear analyses for detection of sudden cardiac death (SCD) using ECG and HRV signals. Trends Res. (2018). https://doi.org/10.15761/tr.1000105

    Article  Google Scholar 

  43. Harrington, P.: Machine Learning in Action. Manning, Shelter Island (2012)

    Google Scholar 

  44. Valentini, G., Masulli, F.: Ensembles of learning machines. In: Neural Nets Lecture Notes in Computer Science, pp. 3–20. Springer, Berlin (2002)

    Google Scholar 

  45. Johansson, R., Bostrom, H., Karlsson, A.: A study on class-specifically discounted belief for ensemble classifiers. In: 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (2008). https://doi.org/10.1109/mfi.2008.4648012

  46. Ramos-Jiménez, G., Campo-Ávila, J.D., Morales-Bueno, R.: Hybridizing ensemble classifiers with individual classifiers. In: 2009 Ninth International Conference on Intelligent Systems Design and Applications (2009). https://doi.org/10.1109/isda.2009.148

  47. Bagheri, M.A., Gao, Q.: An efficient ensemble classification method based on novel classifier selection technique. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics - WIMS 12 (2012). https://doi.org/10.1145/2254129.2254157

  48. Verma, B., Rahman, A.: Cluster-oriented ensemble classifier: impact of multicluster characterization on ensemble classifier learning. IEEE Trans. Knowl. Data Eng. 24, 605–618 (2012)

    Article  Google Scholar 

  49. Gupta, R., Audhkhasi, K., Narayanan, S.: Training ensemble of diverse classifiers on feature subsets. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014). https://doi.org/10.1109/icassp.2014.6854136

  50. Yu, Z., Li, L., Liu, J., Han, G.: Hybrid adaptive classifier ensemble. IEEE Trans. Cybern. 45, 177–190 (2015)

    Article  Google Scholar 

  51. Dijk, M.R.V., Steyerberg, E.W., Stenning, S.P., Dusseldorp, E., Habbema, J.D.F.: Survival of patients with nonseminomatous germ cell cancer: a review of the IGCC classification by Cox regression and recursive partitioning. Br. J. Cancer 90, 1176–1183 (2004)

    Article  Google Scholar 

  52. Zhao, J.: Mixed-effects cox models of alcohol dependence in extended families. BMC Genet. (2005). https://doi.org/10.1186/1471-2156-6-s1-s127

    Article  Google Scholar 

  53. Bellera, C.A., Macgrogan, G., Debled, M., Lara, C.T.D., Brouste, V., Mathoulin-Pélissier, S.: Variables with time-varying effects and the cox model: some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC Med. Res. Methodol. (2010). https://doi.org/10.1186/1471-2288-10-20

    Article  Google Scholar 

  54. Royston, P., Altman, D.G.: External validation of a Cox prognostic model: principles and methods. BMC Med. Res. Methodol. (2013). https://doi.org/10.1186/1471-2288-13-33

    Article  Google Scholar 

  55. Darwiche, A., Mukherjee, S.: Machine learning methods for septic shock prediction. In: Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality - AIVR 2018 (2018). https://doi.org/10.1145/3293663.3293673

  56. Klein, H., Auricchio, A., Reek, S., Geller, C.: New primary prevention trials of sudden cardiac death in patients with left ventricular dysfunction: SCD-HEFT and MADIT-II. Am. J. Cardiol. 83, 91–97 (1999)

    Article  Google Scholar 

  57. Dziura, J.D., Post, L.A., Zhao, Q., Fu, Z., Peduzzi, P.: Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J. Biol. Med. 86, 343–358 (2013)

    Google Scholar 

  58. Kotsiantis, S., Dimitris, D., Pintelas, P.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30, 25–36 (2006)

    Google Scholar 

  59. Fox, J., Weisberg, S.: Cox proportional-hazards regression for survival data in R. An Appendix to an R Companion to Applied Regression, 2nd edn. (2011)

    Google Scholar 

  60. Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., Popp, J.: Sample size planning for classification models. Anal. Chim. Acta 760, 25–33 (2013)

    Article  Google Scholar 

  61. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encycl. Database Syst. 5, 532–538 (2009)

    Article  Google Scholar 

  62. Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiman Darwiche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Geneidy, A., Mukherjee, S., Darwiche, A. (2021). Prediction of Sudden Cardiac Death Using Ensemble Classifiers. In: Arai, K. (eds) Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing, vol 1364. Springer, Cham. https://doi.org/10.1007/978-3-030-73103-8_48

Download citation

Publish with us

Policies and ethics