Skip to main content

A Survey of 6G Wireless Communications: Emerging Technologies

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1363))

Included in the following conference series:

Abstract

While fifth-generation (5G) communications are being rolled out around the world, sixth-generation (6G) communications have attracted much attention from both the industry and the academia. Compared with 5G, 6G will have a wider frequency band, higher transmission rate, spectrum efficiency, greater connection capacity, shorter delay, wider coverage and stronger anti-interference capability, so as to meet the various network requirements for industries. In this paper, we present a survey of potential essential technologies in 6G. In particular, we will introduce index modulation, artificial intelligence, intelligent surfaces, and terahertz communications technologies in detail, while giving a brief introduction to other potential technologies, including visible light communications, blockchain-enabled wireless network, advanced duplex, holographic radio and network in box.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Alhiga, R., Haas, H.: Subcarrier-index modulation OFDM. In: 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 177–181. IEEE (2009)

    Google Scholar 

  2. Al-Nahhal, I., Dobre, O.A., Basar, E., Ikki, S.: Low-cost uplink sparse code multiple access for spatial modulation. IEEE Trans. Veh. Technol. 68(9), 9313–9317 (2019)

    Article  Google Scholar 

  3. Andrews, J.G., Bai, T., Kulkarni, M.N., Alkhateeb, A., Gupta, A.K., Heath, R.W.: Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1), 403–430 (2016)

    Google Scholar 

  4. Başar, E.: Multiple-input multiple-output OFDM with index modulation. IEEE Sig. Process. Lett. 22(12), 2259–2263 (2015)

    Article  Google Scholar 

  5. Basar, E.: On multiple-input multiple-output OFDM with index modulation for next generation wireless networks. IEEE Trans. Sig. Process. 64(15), 3868–3878 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Basar, E., Altunbas, I.: Space-time channel modulation. IEEE Trans. Veh. Technol. 66(8), 7609–7614 (2017)

    Article  Google Scholar 

  7. Basar, E., Di Renzo, M., de Rosny, J., Debbah, M., Alouini, M.S., Zhang, R.: Wireless communications through reconfigurable intelligent surfaces. arXiv preprint arXiv:1906.09490 (2019)

  8. Bouida, Z., El-Sallabi, H., Ghrayeb, A., Qaraqe, K.A.: Reconfigurable antenna-based space-shift keying (SSK) for MIMO rician channels. IEEE Trans. Wirel. Commun. 15(1), 446–457 (2015)

    Article  Google Scholar 

  9. Strinati, E.C., Barbarossa, S., Gonzalez-Jimenez, J., Cassiau, D.N., Dehos, C.: 6G: The next frontier. arXiv preprint arXiv:1901.03239 (2019)

  10. Chen, S., Liang, Y.C., Sun, S., Kang, S., Cheng, W., Peng, M.: Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel Commun. 27(2), 218–228 (2020)

    Article  Google Scholar 

  11. Chevalier, P., Armizhan, A., Wang, F., Piccardo, M., Johnson, S.G., Capasso, F., Everitt, H.O.: Widely tunable compact terahertz gas lasers. Science 366(6467), 856–860 (2019)

    Article  Google Scholar 

  12. Chowdhury, M.Z., Shahjalal, M., Ahmed, S., Jang, Y.M.: 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. arXiv preprint arXiv:1909.11315 (2019)

  13. Chowdhury, M.Z., Shahjalal, M., Hasan, M., Jang, Y.M.: The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl. Sci. 9(20), 4367 (2019)

    Article  Google Scholar 

  14. Corre, Y., Gougeon, G., Doré, J.B., Bicaïs, S., Miscopein, B., Faussurier, E., Saad, M., Palicot, J., Bader, F.: Sub-thz spectrum as enabler for 6G wireless communications up to 1 tbit/s (2019)

    Google Scholar 

  15. Cousik, T., Shafin, R., Zhou, Z., Kleine, K., Reed, J., Liu, L.: CogRF: A new frontier for machine learning and artificial intelligence for 6G RF systems. arXiv preprint arXiv:1909.06862 (2019)

  16. Dai, Y., Du, X., Maharjan, S., Chen, Z., He, Q., Zhang, Y.: Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 33(3), 10–17 (2019)

    Article  Google Scholar 

  17. Dang, S., Amin, O., Shihada, B., Alouini, M.S.: What should 6G be? Nat. Electron. 3(1), 20–29 (2020)

    Article  Google Scholar 

  18. David, K., Elmirghani, J., Haas, H., You, X.H.: Defining 6G: challenges and opportunities [from the guest editors]. IEEE Veh. Technol. Mag. 14(3), 14–16 (2019)

    Article  Google Scholar 

  19. De Carvalho, E., Ali, A., Amiri, A., Angjelichinoski, M., Heath Jr, R.W.: Non-stationarities in extra-large scale massive mimo. arXiv preprint arXiv:1903.03085 (2019)

  20. Di Renzo, M., Debbah, M., Phan-Huy, D.T., Zappone, A., Alouini, M.S., Yuen, C., Sciancalepore, V., Alexandropoulos, G.C., Hoydis, J., Gacanin, H., et al.: Smart radio environments empowered by AI reconfigurable meta-surfaces: An idea whose time has come. arXiv preprint arXiv:1903.08925 (2019)

  21. Elmeadawy, S., Shubair, R.M.: Enabling technologies for 6G future wireless communications: Opportunities and challenges. arXiv preprint arXiv:2002.06068 (2020)

  22. Elsayed, M., Erol-Kantarci, M.: AI-enabled future wireless networks: challenges, opportunities, and open issues. IEEE Veh. Technol. Mag. 14(3), 70–77 (2019)

    Article  Google Scholar 

  23. Faisal, A., Sarieddeen, H., Dahrouj, H., Al-Naffouri, T.Y., Alouini, M.S.: Ultra-massive mimo systems at terahertz bands: Prospects and challenges. arXiv preprint arXiv:1902.11090 (2019)

  24. Fan, R., Yu, Y.J., Guan, Y.L.: Generalization of orthogonal frequency division multiplexing with index modulation. IEEE Trans. Wirel. Commun. 14(10), 5350–5359 (2015)

    Article  Google Scholar 

  25. Gacanin, H.: Autonomous wireless systems with artificial intelligence: a knowledge management perspective. IEEE Veh. Technol. Mag. 14(3), 51–59 (2019)

    Article  Google Scholar 

  26. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M.: Towards 6G networks: Use cases and technologies. arXiv preprint arXiv:1903.12216 (2019)

  27. Giordani, M., Zorzi, M.: Satellite communication at millimeter waves: a key enabler of the 6G era. In: 2020 International Conference on Computing, Networking and Communications (ICNC), pp. 383–388. IEEE (2020)

    Google Scholar 

  28. Gong, S., Lu, X., Hoang, D.T., Niyato, D., Shu, L., Kim, D.I., Liang, Y.C.: Towards smart radio environment for wireless communications via intelligent reflecting surfaces: a comprehensive survey. arXiv preprint arXiv:1912.07794 (2019)

  29. Gui, G., Liu, M., Tang, F., Kato, N., Adachi, F.: 6G: Opening new horizons for integration of comfort, security and intelligence. IEEE Wireless Communications (2020)

    Google Scholar 

  30. Guo, W.: Explainable artificial intelligence (XAI) for 6G: Improving trust between human and machine. arXiv preprint arXiv:1911.04542 (2019)

  31. Han, C., Chen, Y.I.: Propagation modeling for wireless communications in the terahertz band. IEEE Commun. Mag. 56(6), 96–101 (2018)

    Article  Google Scholar 

  32. Han, C., Wu, Y., Chen, Z., Wang, X.: Terahertz communications (teracom): Challenges and impact on 6G wireless systems. arXiv preprint arXiv:1912.06040 (2019)

  33. He, H., Jin, S., Wen, C.K., Gao, F., Li, G.Y., Xu, Z.: Model-driven deep learning for physical layer communications. IEEE Wirel. Commun. (2019)

    Google Scholar 

  34. Ho, T.M., Tran, T.D., Nguyen, T.T., Kazmi, S.M., Le, L.B., Hong, C.S., Hanzo, L.: Next-generation wireless solutions for the smart factory, smart vehicles, the smart grid and smart cities. arXiv preprint arXiv:1907.10102 (2019)

  35. Hu, S., Chitti, K., Rusek, F., Edfors, O.: User assignment with distributed large intelligent surface (lis) systems. In: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE (2018)

    Google Scholar 

  36. Hu, S., Rusek, F., Edfors, O.: Cramér-rao lower bounds for positioning with large intelligent surfaces. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–6. IEEE (2017)

    Google Scholar 

  37. Hu, S., Rusek, F., Edfors, O.: The potential of using large antenna arrays on intelligent surfaces. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–6. IEEE (2017)

    Google Scholar 

  38. Hu, S., Rusek, F., Edfors, O.: Beyond massive mimo: the potential of data transmission with large intelligent surfaces. IEEE Trans. Sig. Process. 66(10), 2746–2758 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jung, M., Saad, W., Kong, G.: Performance analysis of large intelligent surfaces (liss): Uplink spectral efficiency and pilot training. arXiv preprint arXiv:1904.00453 (2019)

  40. Kato, N., Mao, B., Tang, F., Kawamoto, Y., Liu, J.: Ten challenges in advancing machine learning technologies toward 6G. IEEE Wirel. Commun. (2020)

    Google Scholar 

  41. Khalid, N., Akan, O.B.: Wideband THz communication channel measurements for 5G indoor wireless networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

    Google Scholar 

  42. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  43. Le, Y., Ling, X., Wang, J., Ding, Z.: Prototype design and test of blockchain radio access network. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)

    Google Scholar 

  44. Letaief, K.B., Chen, W., Shi, Y., Zhang, J., Zhang, Y.J.A.: The roadmap to 6G-AI empowered wireless networks. arXiv preprint arXiv:1904.11686 (2019)

  45. Liang, Y.C., Long, R., Zhang, Q., Chen, J., Cheng, H.V., Guo, H.: Large intelligent surface/antennas (lisa): Making reflective radios smart. arXiv preprint arXiv:1906.06578 (2019)

  46. Liaskos, C., Nie, S., Tsioliaridou, A., Pitsillides, A., Ioannidis, S., Akyildiz, I.: A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag 56(9), 162–169 (2018)

    Article  Google Scholar 

  47. Ling, X., Wang, J., Bouchoucha, T., Levy, B.C., Ding, Z.: Blockchain radio access network (B-RAN): Towards decentralized secure radio access paradigm. IEEE Access, 7, 9714–9723 (2019)

    Google Scholar 

  48. Liu, C., Yang, L.L., Wang, W.: Transmitter-precoding-aided spatial modulation achieving both transmit and receive diversity. IEEE Trans. Veh. Technol. 67(2), 1375–1388 (2017)

    Article  Google Scholar 

  49. Lovén, L., Leppänen, T., Peltonen, E., Partala, J., Harjula, E., Porambage, P., Ylianttila, M., Riekki. J.: EdgeAI: a vision for distributed, edge-native artificial intelligence in future 6G networks. In: The 1st 6G Wireless Summit, pp. 1–2 (2019)

    Google Scholar 

  50. Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 20(4), 2595–2621 (2018)

    Article  Google Scholar 

  51. Matti, L., Kari, L.: Key drivers and research challenges for 6G ubiquitous wireless intelligence. 6G Flagship, Oulu, Finland, White Paper (2019)

    Google Scholar 

  52. Mollah, M.B., Azad, M.A.K., Vasilakos, A.: Secure data sharing and searching at the edge of cloud-assisted Internet of Things. IEEE Cloud Comput. 4(1), 34–42 (2017)

    Google Scholar 

  53. Mollah, M.B., Zeadally, S., Azad, M.A.K.: Emerging wireless technologies for Internet of Things applications: opportunities and challenges. In: Encyclopedia of Wireless Networks, pp. 1–11. Springer International Publishing Cham (2019)

    Google Scholar 

  54. Mollah, M.B., Zhao, J., Niyato, D., Lam, K.Y., Zhang, X., Ghias, A.M.Y.M., Koh, L.H., Yang, L.: Blockchain for future smart grid: a comprehensive survey. IEEE Internet Things J. 8(1), 18–43 (2020)

    Article  Google Scholar 

  55. Nadeem, Q.U.A., Kammoun, A., Chaaban, A., Debbah, M., Alouini, M.S.: Large intelligent surface assisted mimo communications. arXiv preprint arXiv:1903.08127 (2019)

  56. Naresh, Y., Chockalingam, A.: On media-based modulation using RF mirrors. IEEE Trans. Veh. Technol. 66(6), 4967–4983 (2016)

    Article  Google Scholar 

  57. Nawaz, S.J., Sharma, S.K., Wyne, S., Patwary, M.N., Asaduzzaman, M.: Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future. IEEE Access 7, 46317–46350 (2019)

    Article  Google Scholar 

  58. Nayak, S., Patgiri, R.: 6G: Envisioning the key issues and challenges. arXiv preprint arXiv:2004.04024 (2020)

  59. Özdogan, O., Björnson, E., Larsson, E.G.: Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. arXiv preprint arXiv:1911.03359 (2019)

  60. Piran, J., Suh, D.Y.: Learning-driven wireless communications, towards 6G. In: 2019 International Conference on Computing, Electronics and Communications Engineering (ICCECE), pp. 219–224. IEEE (2019)

    Google Scholar 

  61. Porambage, P., Kumar, T., Liyanage, M., Lauri Lovén, J.P., Ylianttila, M., Seppänen, T.: Sec-EdgeAI: AI for edge security vs security for edge AI (2019)

    Google Scholar 

  62. Rajatheva, N., Atzeni, I., Bjornson, E., Bourdoux, A., Buzzi, S., Dore, J.B., Erkucuk, S., Fuentes, M., Guan, K., Hu, Y., Huang, X., Hulkkonen, J., Jornet, J.M., Katz, M., Nilsson, R., Panayirci, E., Rabie, K., Rajapaksha, N., Salehi, M.J., Sarieddeen, H., Svensson, T., Tervo, O., Tolli, A., Wu, Q., Xu, W.: White paper on broadband connectivity in 6G. arXiv preprint arXiv:2004.14247 (2020)

  63. Saad, W., Bennis, M., Chen, M.: A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. arXiv preprint arXiv:1902.10265 (2019)

  64. Sarieddeen, H., Saeed, N., Al-Naffouri, T.Y., Alouini, M.S.: Next generation terahertz communications: A rendezvous of sensing, imaging and localization. arXiv preprint arXiv:1909.10462 (2019)

  65. Seifi, E., Atamanesh, M., Khandani, A.K.: Media-based mimo: Outperforming known limits in wireless. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2016)

    Google Scholar 

  66. Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J., Zhang, J.: Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G. arXiv preprint arXiv:1907.07862 (2019)

  67. Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J., Zhang, J.C.: Artificial intelligence-enabled cellular networks: a critical path to beyond-5G and 6G. IEEE Wirel. Commun. 27(2), 212–217 (2020)

    Article  Google Scholar 

  68. Shamasundar, B., Jacob, S., Chockalingam, A.: Time-indexed media-based modulation. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2017)

    Google Scholar 

  69. Stoica, R.A., de Abreu, G.T.F.: 6G: the wireless communications network for collaborative and AI applications. arXiv preprint arXiv:1904.03413 (2019)

  70. Sugiura, S., Chen, S., Hanzo, L.: Coherent and differential space-time shift keying: a dispersion matrix approach. IEEE Trans. Commun. 58(11), 3219–3230 (2010)

    Article  Google Scholar 

  71. Sugiura, S., Chen, S., Hanzo, L.: Generalized space-time shift keying designed for flexible diversity-, multiplexing-and complexity-tradeoffs. IEEE Trans. Wirel. Commun. 10(4), 1144–1153 (2011)

    Article  Google Scholar 

  72. Tan, J., Dai, L.: THz precoding for 6G: Applications, challenges, solutions, and opportunities. arXiv preprint arXiv:2005.10752 (2020)

  73. Tariq, F., Khandaker, M., Wong, K.K., Imran, M., Bennis, M., Debbah, M.: A speculative study on 6G. arXiv preprint arXiv:1902.06700 (2019)

  74. Wang, Q., Wang, Z., Chen, S., Hanzo, L.: Enhancing the decoding performance of optical wireless communication systems using receiver-side predistortion. Opt. Express 21(25), 30295–30305 (2013)

    Article  Google Scholar 

  75. Wang, X., Wang, J., He, L., Tang, Z., Song, J.: On the achievable spectral efficiency of spatial modulation aided downlink non-orthogonal multiple access. IEEE Commun. Lett. 21(9), 1937–1940 (2017)

    Article  Google Scholar 

  76. Wills, J.: 5G technology: Which country will be the first to adapt? 23 April 2020. https://www.investopedia.com/articles/markets-economy/090916/5g-technology-which-country-will-be-first-adapt.asp

  77. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  78. Wu, Q., Zhang, R.: Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2019)

    Article  Google Scholar 

  79. Xiao, L., Yang, P., Xiao, Y., Fan, S., Di Renzo, M., Xiang, W., Li, S.: Efficient compressive sensing detectors for generalized spatial modulation systems. IEEE Trans. Veh. Technol. 66(2), 1284–1298 (2016)

    Article  Google Scholar 

  80. Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., Karagiannidis, G.K., Björnson, E., Yang, K., Chih-Lin, I., Ghosh, A.: Millimeter wave communications for future mobile networks. IEEE J. Select. Areas Commun. 35(9), 1909–1935 (2017)

    Article  Google Scholar 

  81. Yang, Y.: Spatial modulation exploited in non-reciprocal two-way relay channels: efficient protocols and capacity analysis. IEEE Trans. Wirel. Commun. 64(7), 2821–2834 (2016)

    Article  Google Scholar 

  82. You, X., Wang, C., Huang, J., Gao, X., Zhang, Z., Wang, M., Huang, Y., Zhang, C., Jiang, Wang, Y.J., Zhu, M., Sheng, B., Wang, D., Pan, Z., Zhu, P., Yang, Y., Liu, Z., Zhang, P., Tao, X., Li, S., Chen, Z., Ma, X., Chihlin, I., Han, S., Li, K., Pan, C., Zheng, Z., Hanzo, L., Shen, X., Guo, Y.J., Ding, Z., Haas, H., Tong, W., Zhu, P., Yang, G., Wang, J., Larsson, E.G., Ngo, H., Hong, W., Wang, H., Hou, D., Chen, J., Zhangcheng Hao, C., Li, G., Tafazolli, R., Gao, Y., Poor, V., Fettweis, G., Liang, Y.: Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. SCIENCE CHINA Information Sciences

    Google Scholar 

  83. Yuan, Y., Zhao, Y., Zong, B., Parolari, S.: Potential key technologies for 6G mobile communications. arXiv preprint arXiv:1910.00730 (2019)

  84. Zappone, A., Di Renzo, M., Debbah, M., Lam, T.T., Qian, X.: Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks for wireless system optimization. IEEE Veh. Technol. Mag. 14(3), 60–69 (2019)

    Article  Google Scholar 

  85. Zhang, L., Liang, Y.C., Niyato, D.: 6G visions: mobile ultra-broadband, super Internet-of-Things, and artificial intelligence. China Commun. 16(8), 1–14 (2019)

    Article  Google Scholar 

  86. Zhang, R., Yang, L.L., Hanzo, L.: Performance analysis of non-linear generalized pre-coding aided spatial modulation. IEEE Trans. Wirel. Commun. 15(10), 6731–6741 (2016)

    Article  Google Scholar 

  87. Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., Karagiannidis, G.K., Fan, P.: 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 14(3), 28–41 (2019)

    Article  Google Scholar 

  88. Zhu, L., Xiao, Z., Xia, X.G., Wu, D.O.: Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access 7, 116123–116132 (2019)

    Article  Google Scholar 

  89. Zong, B., Fan, C., Wang, X., Duan, X., Wang, B., Wang, J.: 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag. 14(3), 18–27 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by 1) Nanyang Technological University (NTU) Startup Grant, 2) Alibaba-NTU Singapore Joint Research Institute (JRI), 3) Singapore Ministry of Education Academic Research Fund Tier 1 RG128/18, Tier 1 RG115/19, Tier 1 RG24/20, Tier 1 RT07/19, Tier 1 RT01/19, and Tier 2 MOE2019-T2-1-176, 4) NTU-WASP Joint Project, 5) Energy Research Institute @NTU (ERIAN), 6) Singapore NRF National Satellite of Excellence, Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0012, 7) AI Singapore (AISG) 100 Experiments (100E) programme, and 8) NTU Project for Large Vertical Take-Off & Landing (VTOL) Research Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Zhao, J., Zhai, W., Sun, S., Niyato, D., Lam, KY. (2021). A Survey of 6G Wireless Communications: Emerging Technologies. In: Arai, K. (eds) Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-73100-7_12

Download citation

Publish with us

Policies and ethics