Skip to main content

Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis

  • Conference paper
  • First Online:
Computational Diffusion MRI

Abstract

Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3 \(\times \) 3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model’s performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.

This work was supported financially by the Réseau de Bio-Imagerie du Québec (RBIQ), the Research Council of Canada (NSERC), the Fonds de Recherche du Québec (FQRNT), ETS Montreal, and NVIDIA with the donation of a GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Mag. Reson. Med. (2006)

    Google Scholar 

  3. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. NeuroImage (2013)

    Google Scholar 

  4. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation (2014)

    Google Scholar 

  5. Gu, X., Knutsson, H., Nilsson, M., Eklund, A.: Generating Diffusion MRI Scalar Maps from T1 Weighted Images Using Generative Adversarial Networks. Technical Report (2019)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society (2016)

    Google Scholar 

  7. Huang, Z., Van Gool, L.: A riemannian network for SPD matrix learning. 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017)

    Google Scholar 

  8. Huang, Z., Wu, J., Van Gool, L.: Manifold-valued image generation with wasserstein generative adversarial nets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3886–3893 (2019)

    Google Scholar 

  9. Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep networks with structured layers. Technical Report (2015)

    Google Scholar 

  10. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage (2002)

    Google Scholar 

  11. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: Review FSL. NeuroImage (2012)

    Google Scholar 

  12. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. (2001)

    Google Scholar 

  13. Jiang, H., Van Zijl, P.C.M., Kim, J., Pearlson, G.D., Mori, S.: DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking (2005)

    Google Scholar 

  14. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  15. Pfefferbaum, A., Sullivan, E.V.: Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Mag. Reson. Med. Official J. Int. Soc. Mag. Reson. Med. (2003)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2015)

    Google Scholar 

  17. Schyboll, F., Jaekel, U., Weber, B., Neeb, H.: The impact of fibre orientation on t1-relaxation and apparent tissue water content in white matter. Mag. Reson. Mater. Phys. Biol. Med. 31(4), 501–510 (2018)

    Google Scholar 

  18. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage (2013)

    Google Scholar 

  19. Taoka, T., Morikawa, M., Akashi, T., Miyasaka, T., Nakagawa, H., Kiuchi, K., Kishimoto, T., Kichikawa, K.: Fractional anisotropy-threshold dependence in tract-based diffusion tensor analysis: evaluation of the uncinate fasciculus in alzheimer disease. Am. J. Neuroradiol. 30(9), 1700–1703 (2009)

    Google Scholar 

  20. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-minn human connectome project: an overview. NeuroImage (2013)

    Google Scholar 

  21. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58 (2019)

    Google Scholar 

  22. Zhong, J., Wang, Y., Li, J., Xue, X., Liu, S., Wang, M., Gao, X., Wang, Q., Yang, J., Li, X.: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development. BioMed. Eng. Online 19 (2020)

    Google Scholar 

  23. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Anctil-Robitaille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anctil-Robitaille, B., Desrosiers, C., Lombaert, H. (2021). Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis. In: Gyori, N., Hutter, J., Nath, V., Palombo, M., Pizzolato, M., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-73018-5_17

Download citation

Publish with us

Policies and ethics