Skip to main content

Fabrication and Potential Applications of Nanoporous Membranes for Separation Processes

  • Chapter
  • First Online:
Environmental Nanotechnology Volume 5

Abstract

Innovative membrane processes are considered a very important segment of controllable separation processes, such as water treatment, gas separation and organic purification. One of the challenges in membrane technology is the challenge of selecting and fabricating membrane material for excellent selectivity and good permeability for selected particle sizes. The utmost operational challenge perturbing the performance of membrane technology is membrane fouling which occur as a result of insoluble materials covering the membrane surface, leading to a reduction in water quality. Other factors perturbing the performance of membrane technology are energy usage and greenhouse emission. Furthermore, the necessity to react to climate change is another major challenge for membrane technology. An excellent membrane should have high stiffness in order to withstand high pressures applied, large surface area and micro- or nanopore structures for excellent selectivity and good permeability for selected particle sizes. The transport of ions and fluid at molecular level, controlled at the nanometer-scale using membranes provide substantial capacity for high selectivity and high fluxes. The potential applications of nanoporous membranes are strongly subjected to the chemical and physical properties of a membrane material. The effective pores size, porosity, uniformity, thickness, surface chemistry and morphology also have influence on membrane separation performance. We reviewed the fabrication and potential applications of nanoporous membranes for separation processes, operational challenge, energy usage, greenhouse emission and effect of climate change. Thus, the major points, include: (1) fabrication methods of nanoporous membranes for excellent selectivity and good permeability for selected particle sizes, (2) Theoretical modeling and simulations of nanoporous membranes, (3) potential applications of nanoporous membranes, (4) the recent discovery of novel nanoporous membrane structures aimed at overcoming the challenge of fouling, (5) the challenge of energy usage, (6) addressing climate change as a contributing factor to the challenges of water treatment industry and membrane technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedini R, Nezhadmoghadam A (2010) Application of membrane in gas separation processes: its suitability and mechanisms. Pet Coal 52(2):69–80

    CAS  Google Scholar 

  • Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12(6):546–550

    Article  CAS  PubMed  Google Scholar 

  • Acikgoz C, Ling XY, Phang IY, Hempenius MA, Reinhoudt DN, Huskens J, Vancso GJ (2009) Fabrication of freestanding nanoporous polyethersulfone membranes using organometallic polymer resists patterned by nanosphere lithography. Adv Mater 21:2064–2067

    Article  CAS  Google Scholar 

  • Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 1:568–581

    Article  CAS  Google Scholar 

  • Affandy A, Keshavarz-Moore E, Versteeg HK (2013) Application of filtration blocking models to describe fouling and transmission of large plasmids DNA in sterile filtration. J Membr Sci 437:150–159

    Article  CAS  Google Scholar 

  • Ahmad SN (2013) Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites. 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6). J Phys Conf Ser 439(012009):1–8

    Google Scholar 

  • Ahuja N, Kumar V, Rathee P (2012) Osmotic-controlled release oral delivery system: an advanced oral delivery form. Pharm Innov 1(7):116–124

    CAS  Google Scholar 

  • Albert JNL, Epps TH III (2010) Self-assembly of block copolymer thin films. Mater Today 13(6):24–33

    Article  CAS  Google Scholar 

  • Altalhi T, Ginic-Markovic M, Han N, Clarke S, Losic D (2011) Synthesis of carbon nanotube (CNT) composite membranes. Membranes:37–47

    Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng:1–24

    Google Scholar 

  • Athanasekou CP, Romanos GE, Katsaros FK, Kordatos K, Likodimos V, Falaras P (2012) Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J Membr Sci 392-393:192–203

    Article  CAS  Google Scholar 

  • Bae TH, Lee JS, Qiu W, William JK, Jones CW, Nair S (2010) A high-performance gas- separation membrane containing sub-micrometer-sized metal–organic framework crystals. Angew Chem Int Ed 49:9863–9866

    Article  CAS  Google Scholar 

  • Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Barrett J, Cooper T, Hammond GP, Pidgeon N (2018) Industrial energy, materials and products: UK decarbonisation challenges and opportunities. Appl Therm Eng 136:643–656

    Article  Google Scholar 

  • Bates FS (1991) Polymer-polymer phase behaviour. Science 251:898–905

    Article  CAS  PubMed  Google Scholar 

  • Beck JS, Vartuli JC, RothWJ LME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesopores molecular sieves prepared with crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  • Bertule M, Appelquist LR, Spensley J, Trærup SLM, Naswa P (2018) Climate change adaptation technologies for water. https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/water_adaptation_technologies_0.pdf. Accessed 13th June 2018

  • Bhattacharjee S (2017) Concentration polarization: early theories: water planet. http://www.waterplanet.com/wp-content/uploads/2017/07/ConcentrationPolarization_FINAL_7-11-17.pdf. Assessed 12th June 2018

  • Bilongo TG, Remigy JC, Clifton MJ (2010) Modification of hollow fibers by UV surface grafting. J Membr Sci 364:304–308

    Article  CAS  Google Scholar 

  • Bolton GR, LaCasse D, Lazzara J, Kuriyel R (2005) The fiber-coating model of pharmaceutical depth filtration. AICHE J 51:2978–2987

    Article  CAS  Google Scholar 

  • Bolton G, LaCasse D, Kuriyel R (2006) Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biolo- gical fluids. J Membr Sci 277(1):75–84

    Article  CAS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI, Son Y-W (2013) Origin of anomalous water permeation through graphene oxide membrane. Nano Lett 13(8):3930–3935

    Article  CAS  PubMed  Google Scholar 

  • Bräuer P, Brzank A, Clark LA, Snurr RQ, Kärger J (2006) Guest-specific diffusion anisotropy in nanoporous materials: molecular dynamics and dynamic Monte Carlo simulations. Adsorp 12(6):417–422

    Article  CAS  Google Scholar 

  • Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    Article  CAS  PubMed  Google Scholar 

  • Cantwell J, King WR, Lorand RT (2010) Overview of state energy reduction programs and guidelines for the wastewater sector, water environment research foundation. IWA Publishing, London

    Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London, p 144

    Book  Google Scholar 

  • Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shaorubalko I, Kye J, Lee C, Park HG (2014) Ultimate permeation across atomically thin porous graphene. Science 344:289–292

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  CAS  Google Scholar 

  • Choi H, Al-Abed SR, Dionysiou DD (2009) Chapter 3: Nanostructured titanium oxide film- and membrane-based photocatalysis for water treatment. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew, Boston, pp 39–46

    Chapter  Google Scholar 

  • Chougui A, Zaiter K, Belouatek A, Asli B (2014) Heavy metals and color retention by a synthesized inorganic membrane. Arab J Chem 7:817–822

    Article  CAS  Google Scholar 

  • Chowdhury SR, Chen Y, Wang Y, Mitra S (2009) Microwave-induced rapid nanocomposite using dispersed single-wall carbon nanotubes as the nuclei. J Mater Sci 44:1245–1250

    Article  CAS  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 17(7):3602–3608

    Article  CAS  Google Scholar 

  • Colson P, Henrist C, Cloots R (2013) Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials: review article. J Nanomater V Article ID 948510:1–19

    Google Scholar 

  • Cornejo PK, Santana MVE, Hokanson DR, Mihelcic JR, Zhang Q (2014) Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools. J Water Reuse Desalin:238–252

    Google Scholar 

  • Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B112(5):1427–1434

    Article  CAS  Google Scholar 

  • Cote P, Siverns S, Monti S (2005) Comparison of membrane-based solutions for water reclamation and desalination. Desalin 182:251–257

    Article  CAS  Google Scholar 

  • Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic-Renual N (2004) Characterization and study of a single-TiO2-coated optical fiber reactor. Appl Catal B Environ 52:213–223

    Article  CAS  Google Scholar 

  • Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  • Ding J, Li X, Wang X, Zhang J, Yu D, Qui R (2015) Fabrication of vertical array CNTs/Polyaniline composite membranes by microwave-assisted In situ polymerization. Nanoscale Res Lett 10:1–19

    Google Scholar 

  • Diggle JW, Downie TC, Goulding CW (1969) Anodic oxide films on aluminum. Chem Rev 69:365–405

    Article  CAS  Google Scholar 

  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Rouff RS (2007) Preparation and characterization of graphene oxide paper. Nature 26(448):457–460

    Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  PubMed  Google Scholar 

  • Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. The J Phys Chem C 115(47):23261–23266

    Article  CAS  Google Scholar 

  • Dumèe L, Sears K, Schütz J, Finn N, Duke M, Gray S (2010) Carbon nanotube based composite membranes for water desalination by membrane distillation. Desalin Water Treat 17(1–3):72–79

    Article  CAS  Google Scholar 

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Article  CAS  PubMed  Google Scholar 

  • Epps TH, Epps TH III, DeLongchamp DM, Fasolka MJ (2007) Substrate surface energy dependent morphology and dewetting in an ABC triblock copolymer film. Langmuir 23:3355–3362

    Article  CAS  PubMed  Google Scholar 

  • Evans A, Strezov V, Evans TJ (2009) Assessment of sustainability indicators for renewable energy technologies. Renew Sust Energ Rev 13:1082–1088

    Article  Google Scholar 

  • Fan HJ, Lee W, Scholz R, Dadgar A, Krost A, Nielsch K, Zacharias M (2005) Arrays for vertically aligned and hexagonally arranged ZnO nanowires: a template directed approach. Nanotechnol 16:913–917

    Article  CAS  Google Scholar 

  • Fane AG (2011) Membranes and the water cycle: challenges and opportunities. Appl Water Sci 1:3–9

    Article  Google Scholar 

  • Field R (2010) Fundamentals of fouling. In: Membranes for water treatment: volume 4: edited by Klaus-Viktor Peinemann and Suzana Pereira Nunes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim: pp. 1–9

    Google Scholar 

  • Fu X, Zeltner WA, Anderson MA (1996) In: Kamat PV, Meisel D (eds) Semiconductor nanoclusters: physical. Chemical and Catalytic Aspects, Elsevier, Amsterdam, pp 445

    Google Scholar 

  • Gao W (2015) Graphene oxide: reduction recipes, spectroscopy, and applications. Springer, Cham, p 29

    Book  Google Scholar 

  • Gelde L, Cuevas AL, Martínez de Yuso MV, Benavente J, Vega V, González AS, Prida VM, Hernando B (2018) Influence of TiO2-Coating layer on nanoporous alumina membranes by ALD technique. Coatings 8(60):1–12

    Google Scholar 

  • Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on the mechanical and electrical properties of CNT/epoxy nanocomposites. Compos A 39:1876–1883

    Article  CAS  Google Scholar 

  • Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalin 308:2–14

    Article  CAS  Google Scholar 

  • Goh PS, Lau WJ, Othman MHD, Ismail AF (2018) Membrane fouling in desalination and its mitigation strategies. Desalin 425:130–155

    Article  CAS  Google Scholar 

  • Gómez V, De La Pava I, Henao Q (2014) Stochastic diffusion of calcium ions through a nanopore in the cell membrane created by electroporation. Excerpt from the proceedings of the 2014 COMSOL conference in Boston

    Google Scholar 

  • Grenier A, Meireles M, Aimar P, Carvin P (2008) Analysing flux decline in dead-end filtration. Chem Eng Res Design 86(11):1281–1293

    Article  CAS  Google Scholar 

  • Griffithsa IM, Kumarb A, Stewart PS (2014) A combined network model for membrane fouling. J Colloid Interface Sci 432:10–18

    Article  CAS  Google Scholar 

  • Guerrini A, Romano G, Indipendenza A (2017) Energy efficiency drivers in wastewater treatment plants: a double bootstrap DEA analysis. Sustainability 9(1126):1–13

    Google Scholar 

  • Hamley IW (1998) The physics of block copolymers. Oxford University Press, New York, p 1

    Google Scholar 

  • Hammond GP, Jones CI (2008) Embodied energy and carbon in construction materials. Proc Instn Civil Engrs-Energy 161:87–98

    Google Scholar 

  • Han JY, Fu J, Schoch RB (2008a) Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33

    Article  CAS  PubMed  Google Scholar 

  • Han E, Stuen KO, La YH, Nealey PF, GoPalan P (2008b) Effect of composition of substrate- modifying random copolymers on the orientation of symmetric and asymmetric diblock copolymer domains. Macromolecules 41:9090–9097

    Article  CAS  Google Scholar 

  • Han J, Xu Z, Gao C (2013) Ultrathin graphene Nanofiltration membrane for water purification. Adv Funct Mater 23:3693–3700

    Article  CAS  Google Scholar 

  • Hauser W, Schwerdtfeger P (2012) Nanoporous graphene membranes for efficient 3He/4He separation. J Phys Chem Lett 3(2):209–213

    Article  CAS  Google Scholar 

  • He D, Sun W, Schrader T, Ulbricht M (2009) Protein adsorbers from surface grafted copolymers with selective binding sites. J Mater Chem 19(2):253–260

    Article  CAS  Google Scholar 

  • Hofs B, Ogier J, Vries D, Beerendonk EF, Cornelissen ER (2011) Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep Purif Technol 79:365–374

    Article  CAS  Google Scholar 

  • Holister, P. Vas Roman, C., Harper T (2013) Nanoporous Materials. Technology white paper nr. 5, Published by Cientifica. http://www.clubofamsterdam.com/conte ntarticles/01%20Nanotechnology/Nanoporous%20Materials.pdf. Assessed 13th Oct 2017

  • Holowka EP, Bhatia SK (2014) Drug delivery: materials design and clinical perspective. Springer, New York, p 9

    Book  Google Scholar 

  • Homaeigohar S, Elbahri M (2017) Graphene membranes for water desalination. NPG Asia Mater 9(e427):1–16

    Google Scholar 

  • Hong JS, Kim C (2007) Extension-induced dispersion of multi-walled carbon nanotubes in non-Newtonian fluid. J Rheol 51:833–850

    Article  CAS  Google Scholar 

  • Hosseni SS, Najari S (2016) Polymeric membranes for gas and vapor separations. In: Visakh PM, Nazarenko O (eds) Nanostructured polymer membranes, volume 2, applications. Wiley, p 100

    Google Scholar 

  • Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Yin Y (2006) Transport and separation of small organic molecules through nanotubules. Anal Sci 22:1005–1009

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Lim H, Chia CH, Yarmo MA, Muhamad M (2011) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomedicine 6:3443–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ying Y, Peng X (2014) Graphene oxide nanosheet: an emerging star material for novel separation membranes. J Mater Chem A 2(34):13772–13782

    Article  CAS  Google Scholar 

  • Huang L, Zhange M, Li C, Shi G (2015) Graphene-based membranes for molecular separation. J Phys Chem Lett 6:2806–2815

    Article  CAS  PubMed  Google Scholar 

  • Hurd B, Leary N, Jones R, Smith J (1999) Relative regional vulnerability of water resources to climate change. J Am Water Resour Assoc 35(6):1399–1409

    Article  Google Scholar 

  • Hwang K-J, Liao C-Y, Tung K-L (2007) Analysis of particle fouling during microfiltration by use of blocking models. J Membr Sci 287:287–293

    Article  CAS  Google Scholar 

  • Iritani E (2003) Properties of filter cake in cake filtration and membrane filtration. Kona 21:19–39

    Article  CAS  Google Scholar 

  • Iritani E (2013) A review of modeling of pore blocking behaviours of membranes during pressurized membrane filtration. Dry Technol 31:146–162

    Article  Google Scholar 

  • Iritani E, Katagiri M (2016) Development of pore blocking filtration model in membrane filtration. KONA Powder Part J 33:179–202

    Article  Google Scholar 

  • Iritani E, Katagiri M, Tadama T, Sumi H (2010) Analysis of clogging behaviour of diatomaceous ceramic membrane during membrane filtration based on specific deposit. AICHE J 56:1748–1758

    Article  CAS  Google Scholar 

  • Iwamoto Y, Kawamoto H (2009a) Trends in research and development of nanoporous ceramic separation membranes – Saving energy by applying the technology to the chemical synthesis process. Sci Technol Trends:43–57

    Google Scholar 

  • Iwamoto Y, Kawamoto H (2009b) Trends in research and development of nanoporous ceramic separation membranes – saving energy by applying the technology to the chemical synthesis process. Q Rev 32:43–58

    Google Scholar 

  • Jarsch IK, Daste F, Gallop JL (2016) Membrane curvature in cell biology: an integration of molecular mechanisms: a review. J Cell Biol 214(4):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeaze HBT, Koschine T, Staudt C, Raetzke K, Janiak C (2013) Correlation of gas permeability in a metal-organic framework MIL-101(Cr)-polysulfone mixed-matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS). Membranes 3:331–353

    Article  CAS  Google Scholar 

  • Jhaveri JH, Jhaveri ZVP, Murthy V (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalin 379:137–154

    Article  CAS  Google Scholar 

  • Ji Y-L, Gu B-X, An Q-F, Gao CJ (2017) Recent advances in the fabrication of membranes containing “ion pairs” for nanofiltration processes. Polym 9(715):1–49

    Google Scholar 

  • Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024

    Article  CAS  PubMed  Google Scholar 

  • Kabsch-Korbutowicz M, Urbanowska A (2010) Water treatment in integrated process using ceramic membranes. Polish J Environ Stud 19(4):731–737

    Google Scholar 

  • Kaminsky W, Wiemann K (2003) Polypropene/silica-nanocomposites synthesized by in situ polymerization. Expected Mater Future 3:6–12

    CAS  Google Scholar 

  • Kang MS, Martin CR (2014) Voltage charging enhances ionic conductivity in gold nanotube membranes. ACS Nano 8(8):8266–8272

    Article  CAS  Google Scholar 

  • Kaplan-Bekaroglu SS, Gode S (2016) Investigation of ceramic membranes performance for tannery wastewater treatment. Desalin Water Treat 57(37):17300–17307

    Article  CAS  Google Scholar 

  • Kärge J, Ruthven DM (2016) Diffusion in nanoporous materials: fundamental principles. Insights and challenges. New J Chem 40:4027–4048

    Article  CAS  Google Scholar 

  • Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol 39(19):7656–7661

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hoek EMV (2005) Modeling concentration polarization in reverse osmosis processes. Desalin 186:111–128

    Article  CAS  Google Scholar 

  • Kim M, Kim T (2013) Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration. Analyst 138:6007–6015

    Article  CAS  PubMed  Google Scholar 

  • Kim WG, Nair S (2013) Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem Eng Sci 104:908–924

    Article  CAS  Google Scholar 

  • Kim S, Lee S, Lee E, Sarper S, Kim C-H, Cho J (2009) Enhanced or reduced concentration polarization by membrane fouling in seawater reverse osmosis (SWRO) processes. Desalin 247:162–168

    Article  CAS  Google Scholar 

  • Kim HJ, Choi K, Baek Y, Kin DG, Shim J, Yoon J, Lee JC (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl Mater Interfaces 6(4):2819–2829

    Article  CAS  PubMed  Google Scholar 

  • Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732

    Article  CAS  PubMed  Google Scholar 

  • Kortunov P, Heinke L, Kärge J (2007) Assessing guest diffusion in nanoporous materials by Boltzmann’s method. Chem Mater 19(16):3917–3923

    Article  CAS  Google Scholar 

  • Kwak S-Y, Kim SH, Kim SS (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol 35(11):2388–2394

    Article  CAS  PubMed  Google Scholar 

  • Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalin 326:77–95

    Article  CAS  Google Scholar 

  • Laska ME, Brooks RP, Gayton M, Pujar NS (2005) Robust scale-up of dead end filtration: impact of filter fouling mechanisms and flow distribution. Biotechnol Bioeng 92(3):308–320

    Article  CAS  PubMed  Google Scholar 

  • Le NL, Nunes PS (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    CAS  Google Scholar 

  • Le-Clech P, Chen V, Fane TA (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53

    Article  CAS  Google Scholar 

  • Lee KP (2013) Fabrication and applications of nanoporous alumina membranes. PhD dissertation, University of Bath, UK

    Google Scholar 

  • Lee SB, Martin CR (2002) Electro-modulated molecular transport in gold-nanotube membranes. J Am Chem Soc 124:11850–11851

    Article  CAS  PubMed  Google Scholar 

  • Lee K-J, Park H-D (2016) Effect of transmembrane pressure, linear velocity, and temperature on permeate water flux of high-density vertically aligned carbon nanotube membranes. Desalin Water Treat 57:26706–26717

    Article  CAS  Google Scholar 

  • Lee SB, Mitchell DT, Trofin LN, Nevanen TK, Soderlund H, Martin CR (2002a) Antibody- based bio-nanotube membranes for enantiomeric drug separations. Science 296:2198–2200

    Article  CAS  PubMed  Google Scholar 

  • Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW (2002b) Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phy Lett 359(1–2):109–114

    Article  CAS  Google Scholar 

  • Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalin 219(1–3):48–56

    Article  CAS  Google Scholar 

  • Lee KP, Morawska PM, Mattia D (2011) Investigation of enhanced fluid transport in nanoporous alumina membranes. International congress on membranes and membrane processes-Amsterdam, Netherlands, July 23rd-29th

    Google Scholar 

  • Lewisa SR, Datta S, Gui M, Coker EL, Huggins FE, Daunert S, Bachas L, Bhattacharyya D (2011) Reactive nanostructured membranes for water purification. PNAS 108(21):8577–8582

    Article  CAS  Google Scholar 

  • Li X, Fustin C-A, Lefèvre N, Gohy J-F, De Feyter S, De Baerdemaeker J, Egger W, Vankelecom IFJ (2010) Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. J Mater Chem 20:4333–4339

    Article  CAS  Google Scholar 

  • Li L, Schulte L, Clausen LD, Hansen KM, Jonsson GE, Ndoni S (2011) Gyroid nanoporous membranes with tunable permeability. ACS Nano 5(10):7754–7766

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ndoni S, Jonsson GE, Vigild ME (2012) Nanoporous polymers for membrane applications. Kgs. Lyngby: Technical University of Denmark, Department of Chemical Engineering

    Google Scholar 

  • Liu C (2014) Advances in membrane technologies for drinking water purification. In: Ahuja S (ed) Water quality and purification. Elsevier, p 91

    Google Scholar 

  • Liu XQ, Chan-Park MB (2009) Facile way to disperse single-walled carbon nanotubes using a noncovalent method and their reinforcing effect in poly (methyl methyacrylate) composites. J Appl Polym Sci 114:3414–3419

    Article  CAS  Google Scholar 

  • Liu GQ, Zhao XS (2004) Nanoporous materials: science and engineering. Imperial College Press, London

    Book  Google Scholar 

  • Liu Y, Xie B, Zhang Z, Zheng Q, Xu Z (2012) Mechanical properties of graphene papers. J Mech Phys Solids 60:591–605

    Article  CAS  Google Scholar 

  • Liu H, Dai S, Jiang D-E (2013) Permeance of H2 through porous graphene from molecular dynamics. Solid State Commun 175-176:101–105

    Article  CAS  Google Scholar 

  • Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972

    Article  CAS  Google Scholar 

  • Ma N, Quan X, Zhang Y, Chen S, Zhao H (2009) Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification. J Membr Sci 335:58–67

    Article  CAS  Google Scholar 

  • Ma N, Zhang Y, Quan X, Fan X, Zhao (2010) Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: evaluating effectiveness for humic acid removal and anti-fouling properties. Water Res 44:6104–6114

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Dong X, Chen M, Zhu L, Wang C, Yang F, Dong Y (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes 7(16):1–21

    Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064):44

    Article  CAS  PubMed  Google Scholar 

  • Makkonen-Craigi S, Yashinaii K, Paronen M (2014) Track-etched ultrafiltration polymer membranes produced by light ion irradiation. Arcada Working Papers 11:1–13

    Google Scholar 

  • Malato J, Blanco AR, Fernandez-Alba A (2000) Aguera. Solar photocatalytic mineralization of commercial pesticides: acrinathrin. Chemosphere 40:403–409

    Article  CAS  PubMed  Google Scholar 

  • Maphutha S, Moothi K, Meyyappan M, Iyuke SE (2013) A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste. Water Sci Rep 3(1509):1–6

    Google Scholar 

  • Martin CR, Nishizawa M, Jirage K, Kang M (2001) Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 105:1925–1934

    Article  CAS  Google Scholar 

  • Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772

    Article  CAS  Google Scholar 

  • Masuda H, Nagae M, Morikawa T, Nishio K (2006) Long-range-ordered anodic porous alumina with reduced hole interval formed in highly concentrated sulfuric acid solution. Jpn J Appl Phys 45:L406–L408

    Article  CAS  Google Scholar 

  • Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers. In: Materials science of membranes for gas and vapor separation. Wiley, pp 1–47

    Google Scholar 

  • Means EG, West N, Patrick R (2005) Population growth and climate change will pose tough challenges for water utilities. J Am Water Works Assoc 97(8):40–46

    Article  CAS  Google Scholar 

  • Meyn T, Bahn A, Leiknes TO (2008) Significance of flocculation for NOM removal by coagulation-ceramic microfiltration. Water Sci Technol Water Supply 8:691–700

    Article  CAS  Google Scholar 

  • Minko S (2008) Grafting on solid surfaces: “grafting to” and “grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin/Heidelberg, p 215

    Chapter  Google Scholar 

  • Mirsaeedghazi H, Emam-Djomeh Z, Mousavi SMA (2009) Concentration of pomegranate juice by membrane processing: membrane fouling and changes in juice properties. J Food Sci Technol 46(6):538–542

    Google Scholar 

  • Mondal S, De S (2010) A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation. Sep Purif Technol 75:222–228

    Article  CAS  Google Scholar 

  • Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Sci 335:442–444

    Article  CAS  Google Scholar 

  • Narayan R (2010) The use of nanomaterials in water purification. Mater Today 13(6):44–46

    Article  CAS  Google Scholar 

  • Ngo THA, Mori S, Tran DI (2017) Photo-induced grafting of poly(ethylene glycol) onto polyamide thin film composite membranes. J Appl Polym Sci 134(43):45454

    Article  CAS  Google Scholar 

  • Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Sci 268:700–702

    Article  CAS  Google Scholar 

  • Nourbakhsh H, Alemi A, Emam-Djomeh Z, Mirsaeedghazi H (2014) Effect of processing parameters on fouling resistances during microfiltration of red plum and watermelon juices: a comparative study. J Food Sci Technol 51(1):168–172

    Article  CAS  PubMed  Google Scholar 

  • O’Hern SC, Boutilier MSH, Idrobo J-C, Song Y, Kong J, Laoui T, Atieh M, Karnik R (2014) Selective tonic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Olson DA, Chen L, Hillmyer MA (2007) Templating nanoporous polymers with ordered block copolymers. Chem Mater 20:869–890

    Article  CAS  Google Scholar 

  • Padowski JC, Jawitz JW (2012) Water availability and vulnerability of 225 large cities in the United States. Water Resour Res 48:1–16

    Article  Google Scholar 

  • Pan T, Zhu XD, Ye YP (2011) Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: a case study in China. Ecol Eng 37:248–254

    Article  Google Scholar 

  • Peeva PD, Pieper T, Ulbricht M (2010) Tuning the ultrafiltration properties of anti-fouling thin-layer hydrogel polyethersulfone composite membranes by suited crosslinker monomers and photo-grafting conditions. J Membr Sci 362:560–568

    Article  CAS  Google Scholar 

  • Peinemann KV, Nunes SP (2008) Membrane technology, volume 1: membranes for life sciences. Wiley-Vch, Weinheim

    Google Scholar 

  • Pendergast TMM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971

    Article  CAS  Google Scholar 

  • Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896

    Article  CAS  PubMed  Google Scholar 

  • Phillip WA, O’Neill B, Rodwogin M, Hillmyer MA, Cussier EL (2010) Self-assembled block copolymer thin films as water filtration membranes. App Mater Interfaces 2:847–853

    Article  CAS  Google Scholar 

  • Poinern GEJ, Ali N, Fawcett D (2011) Progress in nano-engineered anodic aluminum oxide. Membrane development. Mater 4:487–526

    Article  Google Scholar 

  • Popp A, Engstler J, Schneider JJ (2009) Porous carbon nanotube-reinforced metals and ceramics via a double templating approach. Carbon 47(14):3208–3214

    Article  CAS  Google Scholar 

  • Prihasto N, Liu QF, Kim SH (2009) Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalin 249:308–316

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y (2009) Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl Surf Sci 255:7455–7461

    Article  CAS  Google Scholar 

  • Rajeshri W, Bajaj A (2010) Once a day osmotic drug delivery system for highly water soluble pramipexole. J Chem Pharm Res 2(2):136–146

    CAS  Google Scholar 

  • Rajniak P, Tsinontides SC, Pham D, Hunke WA, Reynolds SD, Chern RT (2008) Sterilizing filtration-principles and practice for successful scale-up to manufacturing. J Membr Sci 325(1):223–237

    Article  CAS  Google Scholar 

  • Ramirez P, Apel PY, Cervera J, Mafe S (2008) Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnol 19:1–12

    Article  CAS  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modification for antifouling membranes. Chem Rev 110:2448–2471

    Article  CAS  PubMed  Google Scholar 

  • Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9(3):1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Ridgwaya HF, Orbella J, Gray S (2017) Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. J Membr Sci 524:436–448

    Article  CAS  Google Scholar 

  • Roy S, Bhadra M, Mitra S (2014) Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep Purif Technol 136:58–65

    Article  CAS  Google Scholar 

  • Runge J, Mann J (2008) State of the industry report 2008- charting the course ahead. J Am Water Works Assoc 100(10):61–74

    Article  CAS  Google Scholar 

  • Russo P, Hu A, Compagnini G (2013) Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett 5(4):260–273

    Article  Google Scholar 

  • Ruth BF (1935) Study in filtration III: derivation of general filtration equations. Ind Eng Chem 27:708–723

    Google Scholar 

  • Ruthven DM (2009) Diffusion through porous media: Ultrafiltration membrane Permeation and Molecular Sieving. diffusion-fundamentals.org 11(13):1–20

  • Safaei S, Tavakoli R (2017) On the design of graphene oxide nanosheets membranes for water desalination. Desalin 422:83–90

    Article  CAS  Google Scholar 

  • Santana MVE, Zhang Q, Mihelcic JR (2014) Influence of water quality on the embodied energy of drinking water treatment. Environ Sci Technol 48:3084–3091

    Article  CAS  PubMed  Google Scholar 

  • Santo JLC, Oliveira R, Crespo J (2012) Hybrid modeling of membrane processes. In: Rios G, Centi G, Kanellopoul N (eds) Nanoporous materials for energy and the environment. CRC Press, Boca Raton, p 142

    Google Scholar 

  • Sartowska B, Starosta W, Apel P, Orelovitch O, Blonskaya I (2013) Polymeric track etched membranes application for advanced porous structures formation. Acta Phys Polonica A 123(5):819–821

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Scharlach K, Kaminsky W (2008) New polyolefin-nanocomposites by in situ polymerization with metallocene catalysts. Macromol Symp 261:10–17

    Article  CAS  Google Scholar 

  • Schulze A, Maitz MF, Zimmermann R, Marquardt B, Fischer M, Werner C, Went M, Thomas I (2013) Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes. RCS Adv 3:22518–22526

    CAS  Google Scholar 

  • Shahkaramipour N, Tran TN, Ramanan S, Lin H (2017) Membranes with surface-enhanced antifouling properties for water purification. Membranes 7(13):1–18

    Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariṅas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  PubMed  Google Scholar 

  • Shirasaki N, Matsushita T, Matsui Y, Ohno K (2008) Effects of reversible and irreversible membrane fouling on virus removal by a coagulation–microfiltration system. J Water Supply Res Technol AQUA 57:501–506

    Article  Google Scholar 

  • Siepmann J, Kranz H, Bodmeier R, Peppas NA (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res 16(11):1748–1756

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siegel RA, Siepmann F (2012) Diffusion controlled drug delivery systems. In: Siepmann J et al (eds) Fundamentals and applications of controlled release drug delivery. Advances in delivery science and technology, Controlled release society, Springer, New York, pp 127–128

    Chapter  Google Scholar 

  • Silva P, Han S, Livingston A (2005) Solvent transport in organic solvent nanofiltration membranes. J Membr Sci 262:49–59

    Article  CAS  Google Scholar 

  • Simon L (2011) A computational procedure for assessing the dynamic performance of diffusion-controlled transdermal delivery devices. Pharma 3:485–496

    CAS  Google Scholar 

  • Singh R, Maru VM, Moharir PS (1998) Complex chaotic systems and emergent phenomena. J Nonlinear Sci 8:235–259

    Article  Google Scholar 

  • Snyder MA, Tsapatsis M (2007) Hierarchical nano manufacturing: from shaped zeolite nanoparticles to high-performance separation membranes. Angew Chem-Int Edition 46(40):7560–7573

    Article  CAS  Google Scholar 

  • Snyder MA, Vlachos DG, Katsoulakis MA (2002) A novel approach to molecular modeling of transport through inorganic nanoporous membranes. Fuel Chem Div Prepr 47(1):211–212

    Google Scholar 

  • Snyder JL, Clark A Jr, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, McGrath JL (2011) An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. J Membr Sci 369:119–129

    Article  CAS  Google Scholar 

  • Sombatsompop KM (2007) Membrane fouling studies in suspended and attached growth membrane bioreactor systems. Thesis, Asian Institute of Technology

    Google Scholar 

  • Song H, Shao J, He Y, Liu B, Zhong X (2012) Natural organic matter removal and flux decline with PEG-TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. J Membr Sci 405-406:48–56

    Article  CAS  Google Scholar 

  • Sparreboom W, Van Den Berg A, Eijkel J (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4:713–720

    Article  CAS  PubMed  Google Scholar 

  • Stevenson CL, Santini JT, Langer R (2012) Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 64(14):1590–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes JR, Horvath A (2009) Energy and air emission effects of water supply. Environ Sci Technol 43:2680–2687

    Article  CAS  PubMed  Google Scholar 

  • Strathmann H (2000) Membrane separation processes, 1. Principles. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Stroeve P, Ileri N (2011) Biotechnical and other applications of nanoporous membranes. Trends Biotechnol 29(6):259–266

    Article  CAS  PubMed  Google Scholar 

  • Stylianou SK, Szymanska K, Katsoyiannis LA, Zouboulis AI (2015) Novel water treatment processes based on hybrid membrane-ozonation systems: a novel ceramic membrane contactor for bubbleless ozonation of emerging micropollutants. J Chem 214927:1–12

    Article  CAS  Google Scholar 

  • Suk ME, Aluru N (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1:1590–1594

    Article  CAS  Google Scholar 

  • Sun C, Boutilier MSH, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou NG (2014) Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30:675–682

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Wen B, Bai B (2015a) Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/ N2 separation. Chem Eng Sci 138:616–621

    Article  CAS  Google Scholar 

  • Sun C, Wen B, Bai B (2015b) Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull 60(21):1807–1823

    Article  CAS  Google Scholar 

  • Swaminathan VV, Gibson LR II, Pinti M, Prakash S, Bohn PW, Shannon MA (2012) Ionic transport in nanocapillary membrane systems. J Nanopart Res 14:951–965

    Article  CAS  Google Scholar 

  • Szymczyk A, Fievet P (2005) Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J Membr Sci 252:77–88

    Article  CAS  Google Scholar 

  • Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding based approach without surface modification of nanofillers. Mater 3:1593–1619

    Article  CAS  Google Scholar 

  • Tomas B (2013) Mass transport in nanoporous materials: new insights from micro- imaging by interference microscopy. PhD dissertation, Universität Leipzig

    Google Scholar 

  • Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4:283–287

    Article  CAS  Google Scholar 

  • Torkamanzadeh M, Jahanshahi M, Peyravi M, Rad AS (2016) Comparative experimental study on fouling mechanisms in nano-porous membrane: cheese whey ultrafiltration as a case study. Water Sci Technol 74(12):2737–2750

    Article  CAS  PubMed  Google Scholar 

  • Tu Q, Li T, Deng A, Zhu K, Liu Y, Li S (2018) A scale-up nanoporous membrane centrifuge for reverse osmosis desalination without fouling. Technol 6(1):36–48

    Article  Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polym 47:2217–2262

    Article  CAS  Google Scholar 

  • Velleman L, Shapter JD, Losic D (2008) International conference on nanoscience and nanotechnology, Melbourne Convention Centre, Melbourne, Victoria, Australia, 25th–29th Feb, 2008

    Google Scholar 

  • Venkatesh G, Brattebo H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36:792–800

    Article  Google Scholar 

  • Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Sci 339:535–539

    Article  CAS  Google Scholar 

  • Wang L, Song XJ, Wang T, Wang S, Wang Z, Gao C (2015) Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application. Appl Surf Sci 330:118–125

    Article  CAS  Google Scholar 

  • Wang H, Yang Y, Keller AA, Li X, Feng S, Dong Y, Li F (2016) Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl Energy 184(15):873–881

    Article  CAS  Google Scholar 

  • Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R (2017) Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes: review. Nature Nanotechnol 12:509–522

    Article  CAS  Google Scholar 

  • Wang Z, Wu A, Ciacchi LC, Wei G (2018) Recent advances in nanoporous membranes for water purification. Nano 8(65):1–19

    Google Scholar 

  • Wanichapicharta P, Chittrakarn T, Sujaritturakarn W, Coster HGL (2000) Production of nuclear-track etched membranes. Sci Asia 26:175–179

    Article  Google Scholar 

  • Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2:87–94

    Article  CAS  PubMed  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Sci 295:2418–2421

    Article  CAS  Google Scholar 

  • Winans JD, Smith KJP, Gaborski TR, Roussie JA, McGrath JL (2016) Membrane capacity and fouling mechanisms for ultrathin nanomembranes in dead-end filtration. J Membr Sci 499:282–289

    Article  CAS  Google Scholar 

  • Xia R, Zhang Y, Critto A, Wu J, Fan J, Zheng Z, Zhang Y (2016) The potential impacts of climate change factors on freshwater eutrophication: implications for research and countermeasures of water management in China. Sustainability 8(3):229–245

    Article  Google Scholar 

  • Xu Q, Zhang W (2016) Next-generation graphene-based membranes for gas separation and Water Purifications. In: Silva A (ed) Advances in Carbon Nanostructures. InTech, Croatia, p 41

    Google Scholar 

  • Xu D, Shi X, Guo G (2000) Electrochemical preparation of CdSe nanowire arrays. J Phys Chem B 104:5061–5063

    Article  CAS  Google Scholar 

  • Xu Q, Xu H, Chen J, Lv Y, Dong C, Sreeprasad TS (2015) Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorg Chem Frontiers 2:417–424

    Article  CAS  Google Scholar 

  • Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311

    Article  CAS  Google Scholar 

  • Yanagishita T, Masuda H (2015) High-throughput fabrication process for highly ordered through-hole porous alumina membranes using two-layer anodization. Electrochim Acta 184:80–85

    Article  CAS  Google Scholar 

  • Yanagishita T, Kato A, Masuda H (2017) Preparation of ideally ordered through-hole anodic porous alumina membranes by two-layer anodization. Jpn J Appl Phys 56:1–4

    Article  Google Scholar 

  • Yang H, Wang Z, Lan Q, Wang Y (2017) Antifouling ultrafiltration membranes by selectiveswelling of polystyrene/ poly(ethylene oxide) block copolymers. J Membr Sci 542:226–232

    Google Scholar 

  • Zhang ZF, Yang XW, Zhao YC, Chen QH, Sun JS (2003) Fabrication of anodized aluminum oxide membrane with nanometer pores. Trans Nonferrous Met Soc China 13(2):298–301

    CAS  Google Scholar 

  • Zhang HM, Quan X, Chen S, Zhao H (2006) Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ Sci Technol 40:6104–6109

    Article  CAS  PubMed  Google Scholar 

  • Zhang WM, Li J, Cao LX, Wang YG, Guo W, Liu KX, Xue JM (2008) Fabrication of nanoporous silicon dioxide/silicon nitride membranes using etched ion track technique. Nucl Instrum Methods Phys Res B 266:3166–3169

    Article  CAS  Google Scholar 

  • Zhang Q, Ghosh S, Samitsu S, Peng X, Ichinose I (2011) Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles. J Mater Chem 21(6):1684–1688

    Article  CAS  Google Scholar 

  • Zhang M, Hou C, Halder A, Wang H, Chi Q (2017) Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage. Mater Chem Front 1:37–60

    Article  CAS  Google Scholar 

  • Zhang W, Yang Z, Kaufman Y, Bernstein R (2018) Surface and anti-fouling properties of apolyampholyte hydrogel grafted onto a polyethersulfone membrane. J Colloid Interface Sci 517:155–165

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Meng G, Han F, Li X, Chen B, Xu Q, Zhu X, Chu Z, Kong M, Huang Q (2013a) Nano containers made of various materials with tunable shape and size. Sci Rep 3(2238):1–7

    Google Scholar 

  • Zhao H, Li H, Yu H, Chang H, Quan X, Chen S (2013b) CNTs–TiO2/Al2O3 composite membrane with a photocatalytic function: fabrication and energetic performance in water treatment. Sep Purif Technol 116:360–365

    Article  CAS  Google Scholar 

  • Zhu LP, Dong HB, Wei XZ, Yi Z, Zhu BK, Xu YY (2008) Tethering hydrophilic polymer brushes onto PPESK membranes via surface-initiated atom transfer radical polymerization. J Membr Sci 320:407–415

    Article  CAS  Google Scholar 

  • Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. Asia Mater 6:1–11

    Google Scholar 

  • Zydney AL, Ho C-C (2002) Scale-up of microfiltration systems: fouling phenomena and Vmax analysis. Desalin 146:75–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to Tshwane University of Technology, South Africa and Covenant University, Nigeria. Appreciation also goes to the Department of Higher Education, South Africa. This chapter was supported by the Department of Higher Education, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluranti Agboola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agboola, O. et al. (2021). Fabrication and Potential Applications of Nanoporous Membranes for Separation Processes. In: Dasgupta, N., Ranjan, S., Lichtfouse, E., Mishra, B.N. (eds) Environmental Nanotechnology Volume 5. Environmental Chemistry for a Sustainable World, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-030-73010-9_4

Download citation

Publish with us

Policies and ethics