Skip to main content

Model-Based Adaptive MOR Framework for Unsteady Flows Around Lifting Bodies

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 171))

Abstract

The problem of performing accurate reconstructions of vortex-dominated unsteady flows by means of reduced basis methods is studied. When faced with the necessity of reconstructing the flow field over a specified time window, a method that aims at automatically and adaptively selecting the most accurate reduction technique among a collection of models is presented. The rationale behind the development of such an adaptive framework is to try to cope with the potential loss of important dynamic information that accompanies classical methods, e.g., proper orthogonal decomposition, where snapshots are treated as statistically independent observation of the dynamical system at study. The adaptive framework will be assessed with respect to two different ways of estimating the reconstruction error by the various methods. One method, referred to as direct error, will employ additional snapshots and will compare explicitly the reduced solution with the reference data. The second method will instead consider a finite volume discretization of the equations and evaluate the error in terms of the unsteady residual of the reduced solution. A backward differencing formula will be used to ensure second-order accuracy in the estimation of the residual. Emphasis will be put on the comparative assessment of the two error estimation methods with respect to the identification of the most suitable reduced method to be used for the reconstruction at a specific instant of time. Problems of relevance to aircraft aerodynamics will be considered such as the impulsive start of 2D airfoils in high-lift configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowley, C.W., Dawson, S.T.M.: Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017)

    Article  MathSciNet  Google Scholar 

  2. Taira, K., et al.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)

    Article  Google Scholar 

  3. Taira, K., et al.: Modal analysis of fluid flows: applications and outlook. AIAA J. 58(3), 998–1022 (2020)

    Article  Google Scholar 

  4. Holmes, P., et al.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  5. Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent Struct. Q. Appl. Math. 45, 561–571 (1987)

    Article  MathSciNet  Google Scholar 

  6. Cazemier, W., Verstappen, R.W.C.P., Veldman, A.E.P.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10, 1685–1699 (1998)

    Article  Google Scholar 

  7. Rowley, C.W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using POD and Galerkin projection. Phys. D: Nonlinear Phenom. 189(1–2), 115–129 (2004)

    Article  MathSciNet  Google Scholar 

  8. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)

    Article  MathSciNet  Google Scholar 

  9. Carlberg, K., Barone, M., Antil, H.: Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction. J. Comput. Phys. 330, 693–734 (2017)

    Article  MathSciNet  Google Scholar 

  10. Sieber, M., Paschereit, C.O., Oberleithner, K.: Spectral proper orthogonal decomposition. J. Fluid Mech. 792, 798–828 (2016)

    Article  MathSciNet  Google Scholar 

  11. Sieber, M., Paschereit, C.O., Oberleithner, K.: On the nature of spectral proper orthogonal decomposition and related modal decompositions (2017). arXiv preprint arXiv:1712.08054

  12. Pascarella, G., Barrenechea, G.R., Fossati, M.: Impact of POD modes energy redistribution on flow reconstruction for unsteady flows of impulsively started airfoils and wings. Int. J. Comput. Fluid Dyn. (2019) (Special Issue on Advances in Reduced Order Methods in CFD)

    Google Scholar 

  13. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  14. Tu, J.H., et al.: On dynamic mode decomposition: theory and applications (2013). arXiv preprint arXiv:1312.0041

  15. Noack, B.R., et al.: Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843–872 (2016)

    Article  MathSciNet  Google Scholar 

  16. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(03), 997–1013 (2005)

    Article  MathSciNet  Google Scholar 

  17. Noack, B.R.: From snapshots to modal expansions-bridging low residuals and pure frequencies. J. Fluid Mech. 802, 1–4 (2016)

    Article  MathSciNet  Google Scholar 

  18. Alla, A., Kutz, J.N.: Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput. 39(5), B778–B796 (2017)

    Article  MathSciNet  Google Scholar 

  19. Tissot, G., et al.: Model reduction using dynamic mode decomposition. C. R. Méc. 342(6–7), 410–416 (2014)

    Google Scholar 

  20. Pascarella, G., Barrenechea, G.R., Fossati, M.: Adaptive reduced basis methods for the reconstruction of unsteady vortex-dominated flows. Comput. Fluids 190, 382–397 (2019)

    Article  MathSciNet  Google Scholar 

  21. Pascarella, G., Barrenechea, G.R., Fossati, M.: Model-based adaptive reduced basis methods for unsteady aerodynamic studies. AIAA 2019 Aviation and Aeronautics Forum and Exposition (2019)

    Google Scholar 

  22. Carr, J.C., et al.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. ACM (2001)

    Google Scholar 

  23. Towne, A., Schmidt, O.T., Colonius, T.: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis (2017). arXiv preprint arXiv:1708.04393

  24. Jovanović, M.R., Schmid, P.J., Nichols, W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26(2), 024103 (2014)

    Article  Google Scholar 

  25. Kutz, J.N., et al.: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. Society for Industrial and Applied Mathematics, Philadelphia (2016)

    Book  Google Scholar 

  26. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002)

    Article  MathSciNet  Google Scholar 

  27. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2007)

    Google Scholar 

  28. Nguyen, N.C., Rozza, G., Patera. A.T.: Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers-equation. Calcolo 46, 157–185 (2009)

    Google Scholar 

  29. Fossati, M.: Evaluation of aerodynamic loads via reduced-order methodology. AIAA J. 53, 1685–1699 (2015)

    Article  Google Scholar 

  30. Selmin, V.: The node-centred finite volume approach: bridge between finite differences and finite elements. Comput. Methods Appl. Mech. Eng. 102, 107–138 (1993)

    Article  Google Scholar 

  31. Rumsey, C.L., Gatski, T.B.: Recent turbulence model advances applied to multielement airfoil computations. J. Aircraft 38, 904–910 (2001)

    Google Scholar 

  32. Palacios, F., et al.: Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: AIAA Paper 2013-0287 (2013)

    Google Scholar 

  33. Menter, F.L.: Improved two-equation k-omega turbulence models for aerodynamic flows. NASA Technical Memorandum 103975 (1992)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. G. Barrenechea from Strathclyde University for his suggestions and comments. The simulations were done on the Archie-WeST supercomputer (https://www.archie-west.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fossati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pascarella, G., Fossati, M. (2021). Model-Based Adaptive MOR Framework for Unsteady Flows Around Lifting Bodies. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_13

Download citation

Publish with us

Policies and ethics