Skip to main content

How to Acquire and Calculate 3D LV and RV Volumes and Ejection Fraction (Three Vendors)

  • Chapter
  • First Online:
Practical 3D Echocardiography

Abstract

Left and right ventricular chamber quantification is essential in clinical practice, and the ejection fraction, despite its limitations, remains one of the most powerful determinants of prognosis and a crucial parameter for guiding therapy. Noninvasive imaging is the mainstay for assessing LV volumes and ejection fraction (EF). Echocardiography, and in particular two-dimensional transthoracic echocardiography (TTE), remains the main modality but has limitations that can be overcome by three-dimensional (3D) echocardiography. 3D volumetric analysis using multiplanar reconstruction offers better visualization and quantification of chamber volumes and function without speculative geometric assumptions. Furthermore, advances in 3D myocardial deformation analysis allow more accurate and reproducible results than conventional 2D strain analysis. 3D echocardiography is also gaining acceptance for the evaluation of right ventricular volumes and ejection fractions. Recent developments in fully automatic quantification algorithms and “artificial intelligence” make 3D quantification easy, fast, and reproducible. As with any 3D image and data acquisition, good 2D image quality and expertise are prerequisites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang HS, Bansal RC, Mookadam F, Khandheria BK, Tajik AJ, Chandrasekaran K. Practical guide for three-dimensional transthoracic echocardiography using a fully sampled matrix array transducer. J Am Soc Echocardiogr. 2008;21:979–89. quiz 1081-2

    Article  Google Scholar 

  2. Lang RM, Addetia K, Narang A, Mor-Avi V. 3-dimensional echocardiography: latest developments and future directions. JACC Cardiovasc Imaging. 2018;11:1854–78.

    Article  Google Scholar 

  3. Xu TY, Sun JP, Lee AP, Yang XS, Qiao Z, Luo X, et al. Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int J Cardiol. 2014;176:360–6.

    Article  Google Scholar 

  4. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  Google Scholar 

  5. Yang HS, Pellikka PA, McCully RB, Oh JK, Kukuzke JA, Khandheria BK, et al. Role of biplane and biplane echocardiographically guided 3-dimensional echocardiography during dobutamine stress echocardiography. J Am Soc Echocardiogr. 2006;19:1136–43.

    Article  Google Scholar 

  6. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging. 2016;9:769–82.

    Article  Google Scholar 

  7. Otani K, Nakazono A, Salgo IS, Lang RM, Takeuchi M. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. J Am Soc Echocardiogr. 2016;29:955–65.

    Article  Google Scholar 

  8. Muraru D, Badano LP, Peluso D, Dal Bianco L, Casablanca S, Kocabay G, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr. 2013;26:618–28.

    Article  Google Scholar 

  9. Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC Cardiovasc Imaging. 2012;5:239–51.

    Article  Google Scholar 

  10. Muraru D, Cecchetto A, Cucchini U, Zhou X, Lang RM, Romeo G, et al. Intervendor consistency and accuracy of left ventricular volume measurements using three-dimensional echocardiography. J Am Soc Echocardiogr. 2018;31:158–168.e1.

    Article  Google Scholar 

  11. Volpato V, Mor-Avi V, Narang A, Prater D, Goncalves A, Tamborini G, et al. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiography. 2019;36:312–9.

    Article  Google Scholar 

  12. Hjertaas JJ, Fossa H, Dybdahl GL, Gruner R, Lunde P, Matre K. Accuracy of real-time single- and multi-beat 3-d speckle tracking echocardiography in vitro. Ultrasound Med Biol. 2013;39:1006–14.

    Article  Google Scholar 

  13. Bouchez S, Heyde B, Barbosa D, Vandenheuvel M, Houle H, Wang Y, et al. In-vivo validation of a new clinical tool to quantify three-dimensional myocardial strain using ultrasound. Int J Cardiovasc Imaging. 2016;32:1707–14.

    Article  CAS  Google Scholar 

  14. Zhou X, Thavendiranathan P, Chen Y, Cheng L, Qian Z, Liu S, et al. Feasibility of automated three-dimensional rotational mechanics by real-time volume transthoracic echocardiography: preliminary accuracy and reproducibility data compared with cardiovascular magnetic resonance. J Am Soc Echocardiogr. 2016;29:62–73.

    Article  Google Scholar 

  15. Bernard A, Addetia K, Dulgheru R, Caballero L, Sugimoto T, Akhaladze N, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18:475–83.

    Article  Google Scholar 

  16. Mizukoshi K, Takeuchi M, Nagata Y, Addetia K, Lang RM, Akashi YJ, et al. Normal values of left ventricular mass index assessed by transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr. 2016;29:51–61.

    Article  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.

    Article  Google Scholar 

  18. Muraru D, Cucchini U, Mihaila S, Miglioranza MH, Aruta P, Cavalli G, et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr. 2014;27:858–871.e1.

    Article  Google Scholar 

  19. Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. Population-based reference values for 3D echocardiographic LV volumes and ejection fraction. JACC Cardiovasc Imaging. 2012;5:1191–7.

    Article  Google Scholar 

  20. Fukuda S, Watanabe H, Daimon M, Abe Y, Hirashiki A, Hirata K, et al. Normal values of real-time 3-dimensional echocardiographic parameters in a healthy Japanese population: the JAMP-3D study. Circ J. 2012;76:1177–81.

    Article  Google Scholar 

  21. Aune E, Baekkevar M, Rodevand O, Otterstad JE. Reference values for left ventricular volumes with real-time 3-dimensional echocardiography. Scand Cardiovasc J. 2010;44:24–30.

    Article  Google Scholar 

  22. Yuda S, Sato Y, Abe K, Kawamukai M, Kouzu H, Muranaka A, et al. Inter-vendor variability of left ventricular volumes and strains determined by three-dimensional speckle tracking echocardiography. Echocardiography. 2014;31:597–604.

    Article  Google Scholar 

  23. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. quiz 786-8

    Article  Google Scholar 

  24. Linker DT, Moritz WE, Pearlman AS. A new three-dimensional echocardiographic method of right ventricular volume measurement: in vitro validation. J Am Coll Cardiol. 1986;8:101–6.

    Article  CAS  Google Scholar 

  25. Greiner S, Andre F, Heimisch M, Aurich M, Steen H, Katus HA, et al. A closer look at right ventricular 3D volume quantification by transthoracic echocardiography and cardiac MRI. Clin Radiol. 2019;74(6):490.e7–490.e14.

    Article  CAS  Google Scholar 

  26. Medvedofsky D, Addetia K, Patel AR, Sedlmeier A, Baumann R, Mor-Avi V, et al. Novel approach to three-dimensional echocardiographic quantification of right ventricular volumes and function from focused views. J Am Soc Echocardiogr. 2015;28:1222–31.

    Article  Google Scholar 

  27. Gopal AS, Chukwu EO, Iwuchukwu CJ, Katz AS, Toole RS, Schapiro W, et al. Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2007;20:445–55.

    Article  Google Scholar 

  28. Maffessanti F, Muraru D, Esposito R, Gripari P, Ermacora D, Santoro C, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6:700–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Chandrasekaran .

Editor information

Editors and Affiliations

Electronic Supplementary Material

(AVI 25518 kb)

(AVI 25230 kb)

(MP4 614 kb)

(AVI 16784 kb)

(AVI 7388 kb)

(AVI 15924 kb)

(AVI 2057 kb)

(AVI 4780 kb)

(AVI 5381 kb)

(AVI 40255 kb)

(AVI 18264 kb)

(AVI 15859 kb)

(AVI 2836 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, H.S., Chandrasekaran, K. (2022). How to Acquire and Calculate 3D LV and RV Volumes and Ejection Fraction (Three Vendors). In: Maalouf, J.F., Faletra, F.F., Asirvatham, S.J., Chandrasekaran, K. (eds) Practical 3D Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-030-72941-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72941-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72940-0

  • Online ISBN: 978-3-030-72941-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics