Skip to main content

Applications of Polymeric Materials in Biomedical Engineering

  • Chapter
  • First Online:
Sustainable Production and Applications of Waterborne Polyurethanes

Abstract

The class of multipurpose materials having countless properties for various applications in particular based on their relationship between structure and property is known as polyurethanes (PUs). Particular attention was given to the adaption of different applications of PUs with its unique physical, mechanical, chemical, and biological characteristics. Increasing the potential and efficiency of materials based on PU may be accomplished by modifying the production process or utilizing state-of-the-art characterization techniques. Changes to raw materials and production procedures by suitable methods will easily yield PUs fit for different unique applications. Over the last decade, significant experiments have been performed on the usage of polymers such as medication delivery devices, implants, tissue engineering scaffolds, etc. The discovery of a better synthesis method for polymer systems based on biologically dependent macromolecules may be encouraged by this information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou, E. S., Nagy, K. S., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.

    Article  Google Scholar 

  • Ai, Z., Deng, R., Zhou, Q., Liao, S., & Zhang, H. (2010). High solid content latex: Preparation methods and application. Advances in Colloid and Interface Science, 159, 45–59.

    Article  Google Scholar 

  • Aranguren, M. I., Marcovich, N. E., Salgueiro, W., & Somoza, A. (2013). Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy. Polymer Testing, 32, 115–122.

    Article  Google Scholar 

  • Azam, M. R., Tan, I. M., Ismail, L., Mushtaq, M., Nadeem, M., & Sagir, M. (2014). Kinetics and equilibria of synthesized anionic surfactant onto berea sandstone. Journal of Dispersion Science and Technology, 35(2), 223–230.

    Google Scholar 

  • Bailosky, L. C., Bender, L. M., Bode, D., Choudhery, R. A., Craun, G. P., Gardner, K. J., et al. (2013). Synthesis of polyether polyols with epoxidized soy bean oil. Progress in Organic Coatings, 76, 1712–1719.

    Article  Google Scholar 

  • Barikani, M., & Mohammadi, M. (2007). Synthesis and characterization of starch-modified polyurethane. Carbohydrate Polymers, 68, 773–780.

    Article  Google Scholar 

  • Bayer, O. (1946). Polyurethanes. HM Stationery Office.

    Google Scholar 

  • Bazban-Shotorbani, S., Hasani-Sadrabadi, M. M., Karkhaneh, A., Serpooshan, V., Jacob, K. I., Moshaverinia, A., et al. (2017). Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Journal of Controlled Release, 253, 46–63.

    Article  Google Scholar 

  • Blackwell, J., & Gardner, K. H. (1979). Structure of the hard segments in polyurethane elastomers. Polymer, 20, 13–17.

    Article  Google Scholar 

  • Blanco-Fernandez, B., Lopez-Viota, M., Concheiro, A., & Alvarez-Lorenzo, C. (2011). Synergistic performance of cyclodextrin–agar hydrogels for ciprofloxacin delivery and antimicrobial effect. Carbohydrate Polymers, 85, 765–774.

    Article  Google Scholar 

  • Brocas, A.-L., Mantzaridis, C., Tunc, D., & Carlotti, S. (2013). Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Progress in Polymer Science, 38, 845–873.

    Article  Google Scholar 

  • Cateto, C. A., Barreiro, M. F., Rodrigues, A. E., & Belgacem, M. N. (2009). Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Industrial & Engineering Chemistry Research, 48, 2583–2589.

    Article  Google Scholar 

  • Chen, G. N., & Chen, K. N. (1997). Self-curing behaviors of single pack aqueous-based polyurethane system. Journal of Applied Polymer Science, 63, 1609–1623.

    Article  Google Scholar 

  • Cheng, X., Jin, Y., Sun, T., Qi, R., Li, H., & Fan, W. (2016). An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery. Colloids and Surfaces B: Biointerfaces, 141, 44–52.

    Article  Google Scholar 

  • Cherng, J. Y., Hou, T. Y., Shih, M. F., Talsma, H., & Hennink, W. E. (2013). Polyurethane-based drug delivery systems. International Journal of Pharmaceutics, 450, 145–162.

    Article  Google Scholar 

  • Chu, F., & Guyot, A. (2001). High solids content latexes with low viscosity. Colloid and Polymer Science, 279, 361–367.

    Article  Google Scholar 

  • Cui, X., Guan, X., Zhong, S., Chen, J., Zhu, H., Li, Z., et al. (2017). Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. Ultrasonics Sonochemistry, 38, 145–153.

    Article  Google Scholar 

  • Delebecq, E., Pascault, J.-P., Boutevin, B., & Ganachaud, F. (2013). On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chemical Reviews, 113, 80–118.

    Article  Google Scholar 

  • Desai, S., Thakore, I., Sarawade, B., & Devi, S. (2000). Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. European Polymer Journal, 36, 711–725.

    Article  Google Scholar 

  • Dev, A., Mohan, J. C., Sreeja, V., Tamura, H., Patzke, G. R., Hussain, F., et al. (2010). Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydrate Polymers, 79, 1073–1079.

    Article  Google Scholar 

  • Domanska, A., & Boczkowska, A. (2014). Biodegradable polyurethanes from crystalline prepolymers. Polymer Degradation and Stability, 108, 175–181.

    Article  Google Scholar 

  • Fang, C., Zhou, X., Yu, Q., Liu, S., Guo, D., Yu, R., et al. (2014). Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Progress in Organic Coatings, 77, 61–71.

    Article  Google Scholar 

  • Fangcq, Y., & Zhous, S. (2011). The effect of additives to the polyurethane water-based ink. Research Journal of Chemistry and Environment, 15, 377–379.

    Google Scholar 

  • Filip, D., Macocinschi, D., & Gradinaru, L. (2013). Thermal and surface characteristics of some β-cyclodextrin-based side-chain azo amphiphilic polyurethanes. Polymer Degradation and Stability, 98, 951–957.

    Article  Google Scholar 

  • Fox, R. B., & Edmund, B. (2016). Mechanically frothed gel elastomers and methods of making and using them. Google Patents.

    Google Scholar 

  • Fu, C., Zheng, Z., Yang, Z., Chen, Y., & Shen, L. (2014). A fully bio-based waterborne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiolene reaction to study of final material. Progress in Organic Coatings, 77, 53–60.

    Article  Google Scholar 

  • Galanakis, C. M. (2016). Nutraceutical and functional food components: Effects of innovative processing techniques. Academic Press.

    Google Scholar 

  • Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87, 2068–2075.

    Article  Google Scholar 

  • Howard, G. T. (2002). Biodegradation of polyurethane: A review. International Biodeterioration & Biodegradation, 49, 245–252.

    Article  Google Scholar 

  • Hua, D., Liu, Z., Wang, F., Gao, B., Chen, F., Zhang, Q., et al. (2016). pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydrate Polymers, 151, 1240–1244.

    Article  Google Scholar 

  • Huber, J., & Mecking, S. (2010). Aqueous poly (arylacetylene) dispersions. Macromolecules, 43, 8718–8723.

    Article  Google Scholar 

  • Ionescu, M. (2005). Chemistry and technology of polyols for polyurethanes. iSmithers Rapra Publishing.

    Google Scholar 

  • Islam, M. R., Beg, M. D. H., & Jamari, S. S. (2014). Development of vegetable‐oil‐based polymers. Journal of Applied Polymer Science, 131.

    Google Scholar 

  • Jin, L., Liu, Z., Xu, Q., & Li, Y. (2006). Preparation of soap-free cationic emulsion using polymerizable surfactant. Journal of Applied Polymer Science, 99, 1111–1116.

    Article  Google Scholar 

  • Lalwani, R., & Desai, S. (2010). Sorption behavior of biodegradable polyurethanes with carbohydrate crosslinkers. Journal of Applied Polymer Science, 115, 1296–1305.

    Article  Google Scholar 

  • Lat, D. C., Ali, N., Jais, I. B. M., Yunus, N. Z. M., Razali, R., & Talip, A. R. A. (2020). A review of polyurethane as a ground improvement method. Malaysian Journal of Fundamental and Applied Sciences, 16, 70–74.

    Article  Google Scholar 

  • Leclerc, E., Furukawa, K., Miyata, F., Sakai, Y., Ushida, T., & Fujii, T. (2004). Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials, 25, 4683–4690.

    Article  Google Scholar 

  • Lee, S. J., & Kim, B. K. (2012). Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability. Carbohydrate Polymers, 87, 1803–1809.

    Article  Google Scholar 

  • Li, H., Yang, J., Li, P., Lan, T., & Peng, L. (2017). A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property. Carbohydrate Polymers, 160, 9–17.

    Article  Google Scholar 

  • Liu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications. Journal of Controlled Release, 252, 95–107.

    Article  Google Scholar 

  • Lu, Y., Xia, Y., & Larock, R. C. (2011). Surfactant-free core–shell hybrid latexes from soybean oil-based waterborne polyurethanes and poly (styrene-butyl acrylate). Progress in Organic Coatings, 71, 336–342.

    Article  Google Scholar 

  • Macocinschi, D., Filip, D., Vlad, S., Butnaru, M., & Knieling, L. (2013). Evaluation of polyurethane based on cellulose derivative-ketoprofen biosystem for implant biomedical devices. International Journal of Biological Macromolecules, 52, 32–37.

    Article  Google Scholar 

  • Macocinschi, D., Filip, D., Vlad, S., Oprea, A. M., & Gafitanu, C. A. (2012). Characterization of a poly (ether urethane)-based controlled release membrane system for delivery of ketoprofen. Applied Surface Science, 259, 416–423.

    Article  Google Scholar 

  • Mahmoudi, M., & Laurent, S. (2010). Controlling the burst effect of a drug by introducing starch in the structure of magnetic polyurethane microspheres containing super paramagnetic iron oxide nanoparticles.

    Google Scholar 

  • Mattu, C., Wang, T., Siri, A., Sartori, S., & Ciardelli, G. (2015). Ionic cross-linking of water-soluble polyurethane improves protein encapsulation and release. Engineering in Life Sciences, 15, 448–455.

    Article  Google Scholar 

  • Motamedi, M., Tehrani-Bagha, A., & Mahdavian, M. (2014). The effect of cationic surfactants in acid cleaning solutions on protective performance and adhesion strength of the subsequent polyurethane coating. Progress in Organic Coatings, 77, 712–718.

    Article  Google Scholar 

  • Mushtaq, M., Tan, I. M., Ismail, L., Lee, S. Y. C., Nadeem, M., & Sagir, M. (2014a). Oleate ester-derived nonionic surfactants: Synthesis and cloud point behavior studies. Journal of Dispersion Science and Technology, 35(3), 322–328.

    Google Scholar 

  • Mushtaq, M., Tan, I. M., Ismail, L., Nadeem, M., Sagir, M., Azam, R., & Hashmet, R. (2014b). Influence of PZC (point of zero charge) on the static adsorption of anionic surfactants on a Malaysian sandstone. Journal of Dispersion Science and Technology, 35(3), 343–349.

    Google Scholar 

  • Mushtaq, M., Tan, I. M., Nadeem, M., Devi, C., Lee, S. Y. C., & Sagir, M. (2014c). A convenient route for the alkoxylation of biodiesel and its influence on cold flow properties. International Journal of Green Energy, 11(3), 267–279.

    Google Scholar 

  • Mushtaq, M., Tan, I. M., Rashid, U., Sagir, M., & Mumtaz, M. (2015). Effect of pH on the static adsorption of foaming surfactants on Malaysian sandstone. Arabian Journal of Geosciences, 8(10), 8539–8548.

    Google Scholar 

  • Musselman, S., Santosusso, T., & Sperling, L. (1998). Structure versus performance properties of cast elastomers. In Polyurethanes’ 98 Conference Proceedings.

    Google Scholar 

  • Okoli, C. P., Adewuyi, G. O., Zhang, Q., Diagboya, P. N., & Guo, Q. (2014). Mechanism of dialkyl phthalates removal from aqueous solution using γ-cyclodextrin and starch based polyurethane polymer adsorbents. Carbohydrate Polymers, 114, 440–449.

    Article  Google Scholar 

  • Paramakrishnan, N., Jha, S., & Kumar, K. J. (2016). Effect of carboxymethylation on physicochemical, micromeritics and release characteristics of Kyllinga nemoralis starch. International Journal of Biological Macromolecules, 92, 543–549.

    Article  Google Scholar 

  • Pauzi, N. N. P. N., Majid, R. A., Dzulkifli, M. H., & Yahya, M. Y. (2014). Development of rigid bio-based polyurethane foam reinforced with nanoclay. Composites Part B: Engineering, 67, 521–526.

    Article  Google Scholar 

  • Peng, S.-J., Jin, Y., Cheng, X.-F., Sun, T.-B., Qi, R., & Fan, B.-Z. (2015). A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution. Progress in Organic Coatings, 86, 1–10.

    Article  Google Scholar 

  • Petrović, Z. S. (2008). Polyurethanes from vegetable oils. Polymer Reviews, 48, 109–155.

    Article  Google Scholar 

  • Petrović, Z. S., & Ferguson, J. (1991). Polyurethane elastomers. Progress in Polymer Science, 16, 695–836.

    Article  Google Scholar 

  • Pontis, H. (2017). Protein and carbohydrate separation and purification. In Methods for analysis of carbohydrate metabolism in photosynthetic organisms (pp. 45–63). Academic Press.

    Google Scholar 

  • Poorgholy, N., Massoumi, B., & Jaymand, M. (2017). A novel starch-based stimuli-responsive nanosystem for theranostic applications. International Journal of Biological Macromolecules, 97, 654–661.

    Article  Google Scholar 

  • Rajendran, G., Mahadevan, V., & Srinivasan, M. (1989). Synthesis of some low glass transition temperature polytetrahydrofuran polymers. European Polymer Journal, 25, 461–463.

    Article  Google Scholar 

  • Rokicki, G., & Piotrowska, A. (2002). A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer, 43, 2927–2935.

    Article  Google Scholar 

  • Romaškevič, T., Budrienė, S., Pielichowski, K., & Pielichowski, J. (2006). Application of polyurethane-based materials for immobilization of enzymes and cells: A review. Chemija, 17, 74–89.

    Google Scholar 

  • Rueda, L., Saralegui, A., d’Arlas, B. F., Zhou, Q., Berglund, L. A., Corcuera, M., et al. (2013). Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohydrate Polymers, 92, 751–757.

    Article  Google Scholar 

  • Rueda-Larraz, L., d’Arlas, B. F., Tercjak, A., Ribes, A., Mondragon, I., & Eceiza, A. (2009). Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. European Polymer Journal, 45, 2096–2109.

    Article  Google Scholar 

  • Sagir, M., Mushtaq, M., Tahir, M. S., Tahir, M. B., & Shaik, A. R. (2020). CO2 philic surfactants, switchable amine-based surfactants and wettability alteration for EOR applications. Surfactants for Enhanced Oil Recovery Applications, 89–102.

    Google Scholar 

  • Sagir, M., Mushtaq, M., Tahir, M. B., Tahir, M. S., Ullah, S., Shahzad, K., & Rashid, U. (2018). CO2 foam for enhanced oil recovery (EOR) applications using low adsorption surfactant structure. Arabian Journal of Geosciences, 11(24), 789.

    Google Scholar 

  • Sagir, M., & Talebian, S. H. (2020). Screening of CO2-philic surfactants morphology for high temperature-pressure sandstone reservoir conditions. Journal of Petroleum Science and Engineering, 186, 106789.

    Google Scholar 

  • Sagir, M., Tan, I. M., Mushtaq, M., Ismail, L., Nadeem, M., & Azam, M. R. (2014a). Synthesis of a new CO2 philic surfactant for enhanced oil recovery applications. Journal of Dispersion Science and Technology, 35(5), 647–654.

    Google Scholar 

  • Sagir, M., Tan, I. M., Mushtaq, M., Ismail, L., Nadeem, M., Azam, M. R., & Hashmet, M. R. (2014b). Novel surfactant for the reduction of CO2/brine interfacial tension. Journal of Dispersion Science and Technology, 35(3), 463–470.

    Google Scholar 

  • Sagir, M., Tan, I. M., Mushtaq, M., & Nadeem, M. (2014c). CO2 mobility and CO2/brine interfacial tension reduction by using a new surfactant for EOR applications. Journal of Dispersion Science and Technology, 35(11), 1512–1519.

    Google Scholar 

  • Sagir, M., Tan, I. M., Mushtaq, M., Pervaiz, M., Tahir, M. S., & Shahzad, K. (2016). CO2 mobility control using CO2 philic surfactant for enhanced oil recovery. Journal of Petroleum Exploration and Production Technology, 6(3), 401–407.

    Google Scholar 

  • Sagir, M., Tan, I. M., Mushtaq, M., & Talebian, S. H. (2014d). FAWAG using CO2 philic surfactants for CO2 mobility control for enhanced oil recovery applications. In SPE Saudi Arabia Section Technical Symposium and Exhibition 2014. Society of Petroleum Engineers.

    Google Scholar 

  • Sardon, H., Irusta, L., & Fernández-Berridi, M. (2009). Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: Comparison between zirconium and tin catalysts in the polymerization process. Progress in Organic Coatings, 66, 291–295.

    Article  Google Scholar 

  • Sencadas, V., Correia, D. M., Areias, A., Botelho, G., Fonseca, A., Neves, I., et al. (2012). Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 87, 1295–1301.

    Article  Google Scholar 

  • Seymour, R. B., & Kauffman, G. B. (1992). Polyurethanes: A class of modern versatile materials. Journal of Chemical Education, 69, 909.

    Article  Google Scholar 

  • Shahrousvand, E., Shahrousvand, M., Ghollasi, M., Seyedjafari, E., Jouibari, I. S., & Salimi, A. (2017). Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydrate Polymers, 171, 281–291.

    Article  Google Scholar 

  • Shahzad, K., Čuček, L., Sagir, M., Ali, N., Rashid, M. I., Nazir, R., Nizami, A. S., Al-Turaif, H. A., & Ismail, I. M. I. (2018). An ecological feasibility study for developing sustainable street lighting system. Journal of Cleaner Production, 175, 683–695.

    Google Scholar 

  • Shi, Y., Yu, B., Zhou, K., Yuen, R. K., Gui, Z., Hu, Y., et al. (2015). Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. Journal of Hazardous Materials, 293, 87–96.

    Article  Google Scholar 

  • Solanki, A. R., Kamath, B. V., & Thakore, S. (2015). Carbohydrate crosslinked biocompatible polyurethanes: Synthesis, characterization, and drug delivery studies. Journal of Applied Polymer Science, 132.

    Google Scholar 

  • Solanki, J. M., & Thakore, S. (2014). Structure–property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydrate Polymers, 110, 338–344.

    Google Scholar 

  • Sonnenschein, M. F. (2014). Polyurethanes: Science, technology, markets, and trends (Vol. 11). Wiley.

    Google Scholar 

  • Soto, M., Sebastian, R. M., & Marquet, J. (2014). Photochemical activation of extremely weak nucleophiles: Highly fluorinated urethanes and polyurethanes from polyfluoro alcohols. The Journal of Organic Chemistry, 79, 5019–5027.

    Article  Google Scholar 

  • Tahir, M. B., Sagir, M., & Abas, N. (2019). Enhanced photocatalytic performance of CdO-WO3 composite for hydrogen production. International Journal of Hydrogen Energy, 44(45), 24690–24697.

    Google Scholar 

  • Talebian, S. H., Sagir, M., & Mumtaz, M. (2018). An integrated property–performance analysis for CO2-philic foam-assisted CO2-enhanced oil recovery. Energy & Fuels, 32(7), 7773–7785.

    Google Scholar 

  • Talebian, S. H., Tan, I. M., Sagir, M., Muhammad, M. (2015). Static and dynamic foam/oil interactions: Potential of CO2-philic surfactants as mobility control agents. Journal of Petroleum Science and Engineering, 135, 118–126.

    Google Scholar 

  • Tamburini, D., Łucejko, J. J., Zborowska, M., Modugno, F., Cantisani, E., Mamoňová, M., et al. (2017). The short-term degradation of cellulosic pulp in lake water and peat soil: A multi-analytical study from the micro to the molecular level. International Biodeterioration & Biodegradation, 116, 243–259.

    Article  Google Scholar 

  • Ullah, S., Bustam, M. A., Ahmad, F., Nadeem, M., Naz, M. Y., Sagir, M., & Shariff, A. M. (2015). Synthesis and characterization of melamine formaldehyde resins for decorative paper applications. Journal of the Chinese Chemical Society, 62(2), 182–190.

    Article  Google Scholar 

  • Ullah, S., Bustam, M. A., Assiri, M. A., Al-Sehemi, A. G., Sagir, M., Kareem, F. A. A., Elkhalifah, A. E. I., Mukhtar, A., & Gonfa, G. (2019a). Synthesis, and characterization of metal-organic frameworks-177 for static and dynamic adsorption behavior of CO2 and CH4. Microporous and Mesoporous Materials, 288, 109569.

    Google Scholar 

  • Ullah, S., Suleman, H., Tahir, M. S., Sagir, M., Muhammad, S., Al‐Sehemi, A. G., Zafar, M., Kareem, F. A. A., Maulud, A. S., & Bustam, M. A. (2019b). Reactive kinetics of carbon dioxide loaded aqueous blend of 2‐amino‐2‐ethyl‐1, 3‐propanediol and piperazine using a pressure drop method. International Journal of Chemical Kinetics, 51(4), 291–298.

    Google Scholar 

  • Ulrich, H. (1996). Chemistry and technology of isocyanates. Wiley.

    Google Scholar 

  • Unnithan, R., Gnanasekaran, G., Sathishkumar, Y., Lee, Y. S., & Kim, C. S. (2014). Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydrate Polymers, 102, 884–892.

    Article  Google Scholar 

  • Usman, K. M. Z., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.

    Google Scholar 

  • Valodkar, M., & Thakore, S. (2011). Organically modified nanosized starch derivatives as excellent reinforcing agents for bionanocomposites. Carbohydrate Polymers, 86, 1244–1251.

    Article  Google Scholar 

  • Van Nieuwenhove, I., Salamon, A., Adam, S., Dubruel, P., Van Vlierberghe, S., & Peters, K. (2017). Gelatin-and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Carbohydrate Polymers, 161, 295–305.

    Article  Google Scholar 

  • Vermette, P., Griesser, H. J., Laroche, G., & Guidoin, R. (2001). Biomedical applications of polyurethanes (Vol. 6). Landes Bioscience Georgetown.

    Google Scholar 

  • Wang, W., Xu, J., & Wang, A. (2011). A pH-, salt-and solvent-responsive carboxymethylcellulose-g-poly (sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polymer Letters, 5.

    Google Scholar 

  • Wu, G.-M., Chen, J., Huo, S.-P., Liu, G.-F., & Kong, Z.-W. (2014). Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydrate Polymers, 105, 207–213.

    Article  Google Scholar 

  • Wu, Q., Henriksson, M., Liu, X., & Berglund, L. A. (2007). A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules, 8, 3687–3692.

    Article  Google Scholar 

  • Zhao, J., Zheng, K., Nan, J., Tang, C., Chen, Y., & Hu, Y. (2017). Synthesis and characterization of lignosulfonate-graft-poly (acrylic acid)/hydroxyethyl cellulose semi-interpenetrating hydrogels. Reactive and Functional Polymers, 115, 28–35.

    Article  Google Scholar 

  • Zhao, Q., Sun, G., Yan, K., Zhou, A., & Chen, Y. (2013). Novel bio-antifelting agent based on waterborne polyurethane and cellulose nanocrystals. Carbohydrate Polymers, 91, 169–174.

    Article  Google Scholar 

  • Zheng, J., Luo, J., Zhou, D., Shen, T., Li, H., Liang, L., et al. (2010). Preparation and properties of non-ionic polyurethane surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363, 16–21.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Departments at their respective universities for providing state of the art research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sagir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhtar, A. et al. (2021). Applications of Polymeric Materials in Biomedical Engineering. In: Inamuddin, Boddula, R., Khan, A. (eds) Sustainable Production and Applications of Waterborne Polyurethanes. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72869-4_8

Download citation

Publish with us

Policies and ethics