Skip to main content

Global Patterns of Plant Litter Decomposition in Streams

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

Understanding ecological patterns and processes at the global scale is becoming increasingly important in view of the rapid pace of environmental change and consequent impacts on ecosystems. This chapter reviews current knowledge about how plant litter decomposition—a key stream ecosystem process—and its major biotic and abiotic drivers vary globally along geographic gradients. The evidence available suggests that thermal regime is the main factor influencing microbial decomposition rate, which tends to increase with temperature. The presence or absence of litter-consuming detritivores is a major determinant of overall decomposition rate, the scarcity of these invertebrates being a common pattern in tropical streams. However, relating detritivore-mediated decomposition rates to environmental factors is complex, because of the interplay between detritivore abundance, body size distribution, diversity and community composition, as well as plant litter traits and diversity, all of which are influenced by climate, geology and biogeography. Meta-analyses and a growing number of coordinated large-scale studies have greatly enhanced our understanding of geographical variation of litter decomposition in streams, and have enabled first projections of how climate warming and a range of other aspects of global environmental change will affect the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361, 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Clare, S., & Mack, M. C. (2011). Influence of precipitation on soil and foliar nutrients across nine Costa Rican forests. Biotropica, 43, 433–441.

    Article  Google Scholar 

  • Andrushchenko, I. V., Taylor, B. R., Toxopeus, J., & Wilson, E. (2016). Congregations of the leaf-shredding insect Lepidostoma togatum mediate exceptionally rapid mass loss from leaf litter in Nova Scotia rivers. Hydrobiologia, 788, 245–265.

    Article  Google Scholar 

  • Baldy, V., Gobert, V., Guerold, F., Chauvet, E., Lambrigot, J., & Charcosset, J.-Y. (2007). Leaf litter breakdown budgets in streams of various trophic statuses: Effects of dissolved organic nutrients in microorganisms and invertebrates. Freshwater Biology, 52, 1322–1335.

    Article  CAS  Google Scholar 

  • Bärlocher, F., & Kendrick, B. (1975). Leaf-conditioning by microorganisms. Oecologia, 20, 359–362.

    Article  PubMed  Google Scholar 

  • Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., & Tranvik, L. J. (2009). The boundless carbon cycle. Nature Geoscience, 2, 598–600.

    Article  CAS  Google Scholar 

  • Benfield, E. F. (1997). Comparison of litterfall input to streams. Journal of the North American Benthological Society, 16, 104–108.

    Article  Google Scholar 

  • Boyero, L., Barmuta, L. A., Ratnarajah, L., Schmidt, K., & Pearson, R. G. (2012). Effects of exotic riparian vegetation on leaf breakdown by shredders: A tropical–temperate comparison. Freshwater Science, 31, 296–303.

    Article  Google Scholar 

  • Boyero, L., Graça, M. A. S., Tonin, A. M., Pérez, J., Swafford, J. A., Ferreira, V., Landeira-Dabarca, A., Alexandrou, M. A., Gessner, M. O., McKie, B. G., Albarino, R. J., Barmuta, L. A., Callisto, M., Chara, J., Chauvet, E., Colon-Gaud, C., Dudgeon, D., Encalada, A.C., Figueroa, R., … Pearson, R. G. (2017). Riparian plant litter quality increases with latitude. Scientific Reports, 7, 10562.

    Google Scholar 

  • Boyero, L., & Pearson, R. G. (2006). Intraspecific interference in a tropical stream shredder guild. Marine and Freshwater Research, 57, 201–206.

    Article  Google Scholar 

  • Boyero, L., & Pearson, R. G. (2017). Global-scale coordinated networks as a tool for exploring the functioning of stream ecosystems. Limnetica, 36, 557–565.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Albariño, R., Callisto, M., Correa-Araneda, F., Encalada, A. C., Masese, F., Moretti, M., Ramírez, A., Sparkman, A., Swan, C. M., Yule, C. M., & Graça, M. A. S. (2020). Identifying stream invertebrates as plant litter consumers. In F. Barlochër, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to Study Plant Litter Decomposition. A Practical Guide. 2nd Edition. Springer, pp. 445–464.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Dudgeon, D., Ferreira, V., Graça, M. A. S., Gessner, M. O., Boulton, A. J., Chauvet, E., Yule, C. M., Albariño, R. J., Ramírez, A., Helson, J. E., Callisto, M., Arunachalam, M., Chará, J., Figueroa, R., Mathooko, J. M., Gonçalves, J. F., Moretti, M., … Barmuta, L. A. (2012). Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134–141.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albariño, R. J., Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E., Ramírez, A., Chará, J., Moretti, M. S., Gonçalves, J. F., Helson, J. E., Chará-Serna, A. M., Encalada, A. C., … Pringle, C. M. (2011). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 92, 1839–1848.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecology Letters, 14, 289–294.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Dudgeon, D., Ramírez, A., Yule, C. M., Callisto, M., Pringle, C. M., Encalada, A. C., Arunachalam, M., Mathooko, J., Helson, J. E., Rincón, J., Bruder, A., Cornejo, A., Flecker, A. S., Mathuriau, C., M’Erimba, C., Gonçalves, J. F., … Jinggut, T. (2015). Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science, 34, 759–769.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Hui, C., Gessner, M. O., Pérez, J., Alexandrou, M. A., Graça, M. A. S., Cardinale, B. J., Albariño, R., Arunachalam, M., Barmuta, L. A., Boulton, A. J., Bruder, A., Callisto, M., Chauvet, E., Death, R. G., Dudgeon, D., Encalada, A. C., Ferreira, V., … Yule, C. M. (2016). Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings of the royal society B: Biological sciences, 283, 20152664.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Swan, C. M., Hui, C., Albariño, R. J., Arunachalam, M., Callisto, M., Chará, J., Chará-Serna, A. M., Chauvet, E., Cornejo, A., Dudgeon, D., Encalada, A. C., Ferreira, V., Gessner, M. O., Gonçalves, J. F., Graça, M. A. S., Helson, J. E., Mathooko, J. M., … Yule, C. M. (2015). Latitudinal gradient of nestedness and its potential drivers in stream detritivores. Ecography, 38.

    Google Scholar 

  • Boyero, L., Pérez, J., López-Rojo, N., Tonin, A. M., Correa-Araneda, F., Pearson, R. G., Bosch, J., Albariño, R. J., Anbalagan, S., Barmuta, L.A., Beesley, L., Burdon, F. J., Caliman, A., Callisto, M., Campbell, I. C., Cardinale, B. J., Casas, J. J., Chará-Serna, A. M., Ciapała, S., Chauvet, E., … Yule, C. M. (2021). Latitude dictates plant diversity effects on instream decomposition. Science Advances, 7(13), eabe7860.

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.

    Article  Google Scholar 

  • Bruder, A., Schindler, M. H., Moretti, M. S., & Gessner, M. O. (2014). Litter decomposition in a temperate and a tropical stream: The effects of species mixing, litter quality and shredders. Freshwater biology, 59, 438–449.

    Article  CAS  Google Scholar 

  • Camacho, R., Boyero, L., Cornejo, A., Ibáñez, A., & Pearson, R. G. (2009). Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica, 41, 625–632.

    Article  Google Scholar 

  • Cheshire, K., Boyero, L., & Pearson, R. G. (2005). Food webs in tropical Australian streams: Shredders are not scarce. Freshwater biology, 50, 748–769.

    Article  Google Scholar 

  • Coley, P. D., & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual review of ecology and systematics, 27, 305–335.

    Article  Google Scholar 

  • Connolly, N. M., & Pearson, R. G. (2013). Nutrient enrichment of a heterotrophic stream alters leaf litter nutritional quality and shredder physiological condition via the microbial pathway. Hydrobiologia, 718, 85–92.

    Article  Google Scholar 

  • Corvalan, C., Hales, S., & McMichael, A. (2005). Ecosystems and human well-being: Health synthesis: A report of the Millennium Ecosystem Assessment. World Health Organization.

    Google Scholar 

  • Coughlan, J. F., Pearson, R. G., & Boyero, L. (2010). Crayfish process leaf litter in tropical streams even when shredding insects are common. Marine and freshwater research, 61, 541–548.

    Article  CAS  Google Scholar 

  • Cuffney, T. F., Wallace, J. B., & Lugthart, G. J. (1990). Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshater biology, 23, 281–299.

    Article  Google Scholar 

  • Cummins, K. W. (1974). Structure and function of stream ecosystems. BioScience, 24, 631–641.

    Article  Google Scholar 

  • Cummins, K. W., Wilzbach, M. A., Gates, D. M., Perry, J. B., & Taliaferro, W. B. (1989). Shredders and riparian vegetation. BioScience, 39, 24–30.

    Article  Google Scholar 

  • Datry, T., Foulquier, A., Corti, R., von Schiller, D., Tockner, K., Mendoza-Lera, C., Clément, J. C., Gessner, M. O., Moleón, M., Stubbington, R., Gücker, B., Albariño, R., Allen, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., … Zoppini, A. (2018). A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature geoscience, 11, 497–503.

    Google Scholar 

  • De Meester, L., Sotks, R., & Brans, K. I. (2018). Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integrative zoology, 13, 372–391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the national academy of sciences of the united states of america, 105, 6668–6672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson, M., Magana, A., Mathooko, J. M., & Ndegwa, F. K. (2002). Detritivores in Kenyan highland streams: More evidence for the paucity of shredders in the tropics? Freshwater biology, 47, 909–919.

    Article  Google Scholar 

  • Downing, J. (2012). Global abundance and size distribution of streams and rivers. Inland waters, 2, 229–236.

    Article  Google Scholar 

  • Duarte, S., Barlochër, F., Pascoal, C., & Cássio, F. (2016). Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal ecology, 19, 169–181.

    Article  Google Scholar 

  • Encalada, A., Calles, J., Ferreira, V., Canhoto, C., & Graça, M. A. S. (2010). Riparian land use and the relationship between the benthos and litter decomposition in tropical montane forest streams. Freshwater biology, 55, 1719–1733.

    Google Scholar 

  • Encalada, A. C., Flecker, A. S., Poff, N. L., Suárez, E., Herrera-R, G. A., Ríos-Touma, B., Jumani, S., Larson, E. I., & Anderson, E. P. (2019). A global perspective on tropical montane rivers. Science, 365, 1124–1129.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves, J. F., Goyenola, G., Graça, M. A. S., Hepp, L. U., Kariuki, S., López-Rodríguez, A., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Teixeira-de-Mello, F. (2018). A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems, 22, 629–642.

    Article  Google Scholar 

  • Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E., & Graça, M. A. (2015). A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological reviews of the cambridge philosophical society, 90, 669–688.

    Article  PubMed  Google Scholar 

  • Ferreira, V., & Chauvet, E. (2011). Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global change biology, 17, 551–564.

    Article  Google Scholar 

  • Ferreira, V., Encalada, A. C., & Graça, M. A. S. (2012). Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater science, 31, 945–962.

    Article  Google Scholar 

  • Follstad Shah, J. J., Kominoski, J. S., Ardon, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W. P., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R., & Zeglin, L. H. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 23, 3064–3075.

    Article  PubMed  Google Scholar 

  • Foster, J., Hirst, A. G., & Woodward, G. (2011). Growth and development rates have different thermal responses. The American Naturalist, 178, 668–778.

    Google Scholar 

  • Fraser, L. H., Henry, H. A. L., Carlyle, C. N., White, S. R., Beierkuhnlein, C., Cahill, J. F., Casper, B. B., Cleland, E., Collins, S. L., Dukes, J. S., Knapp, A. K., Lind, E., Long, R., Luo, Y., Reich, P. B., Smith, M. D., Sternberg, M., & Turkington, R. (2013). Coordinated distributed experiments: An emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 11, 147–155.

    Article  Google Scholar 

  • Fugère, V., Jacobsen, D., Finestone, E. H., & Chapman, L. J. (2018). Ecosystem structure and function of afrotropical streams with contrasting land use. Freshwater Biology, 63, 1498–1513.

    Article  Google Scholar 

  • Gallardo, A., & Merino, J. (1993). Leaf decomposition in two Mediterranean ecosystems of sourthwest Spain: Influence of substrate quality. Ecology, 74, 152–161.

    Article  Google Scholar 

  • García-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., & Hättenschwiler, S. (2016). The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30, 819–829.

    Article  Google Scholar 

  • Gessner, M. O. (1997). Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica, 13, 33–44.

    Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 75, 1807–1817.

    Article  Google Scholar 

  • Gessner, M. O., Chauvet, E., & Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384.

    Article  Google Scholar 

  • Gessner, M. O., & Peeters, F. (2020). Determining temperature-normalized decomposition rates. In F. Barlochër, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition: A practical guide. (pp. 545–552). Springer International Publishing.

    Google Scholar 

  • Gonçalves, J. F., Graça, M. A. F., & Callisto, M. (2006). Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society, 24, 344–355.

    Article  Google Scholar 

  • Gonçalves, J. F., Graça, M. A. S., & Callisto, M. (2007). Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology, 52, 1440–1451.

    Article  Google Scholar 

  • Graça, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams—A review. International Review of Hydrobiology, 86, 383–393.

    Article  Google Scholar 

  • Graça, M. A. S., & Cressa, C. (2010). Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology, 95, 97–41.

    Article  Google Scholar 

  • Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Gerrero-Bolaño, F., Wantzen, K. M., & Boyero, L. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology, 100, 1–12.

    Article  Google Scholar 

  • Graça, M. A. S., Hyde, K., & Chauvet, E. (2015). Aquatic hyphomycetes and litter decomposition in tropical—Subtropical low order streams. Fungal Ecology, 19, 182–189.

    Google Scholar 

  • Gulis, V., Ferreira, V., & Graça, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: Implications for stream assessment. Freshwater Biology, 51, 1655–1669.

    Article  CAS  Google Scholar 

  • Haase, P., Pilotto, F., Li, F., Sundermann, A., Lorenz, A. W., Tonkin, J. D., & Stoll, S. (2019). Moderate warming over the past 25years has already reorganized stream invertebrate communities. Science of the Total Environment, 658, 1531–1538.

    Article  CAS  Google Scholar 

  • Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., McKie, B. G., Malmqvist, B., Peeters, E. T., Scheu, S., Schmid, B., van Ruijven, J., Vos, V. C., & Hattenschwiler, S. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218–221.

    Article  CAS  PubMed  Google Scholar 

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038.

    Article  Google Scholar 

  • Horne, C. R., Hirst, A. G., & Atkinson, D. (2015). Temperature-size responses match latitudinal clines in arthropodes, revealing critical differences between aquatic and terrestrial species. Ecology Letters, 18, 327–335.

    Article  PubMed  Google Scholar 

  • Hotchkiss, E. R., Hall, R. O., Jr., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H., Rosvall, M., & Karlsson, J. (2015). Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geoscience, 8, 696–699.

    Article  CAS  Google Scholar 

  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

    Google Scholar 

  • IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield, Eds.). Geneva, Switzerland.

    Google Scholar 

  • Irons, J. G., Oswood, M. W., Stout, R. J., & Pringle, C. M. (1994). Latitudinal patterns in leaf litter breakdown: Is temperature really important? Freshwater biology, 32, 401–411.

    Article  Google Scholar 

  • Iversen, T. M. (1979). Laboratory energetics of larvae of Sericostoma personatum (Trichoptera). Holarctic Ecology, 2, 1–5.

    Google Scholar 

  • Jabiol, J., Bruder, A., Gessner, M. O., Makkonen, M., McKie, B. G., Peeters, E. T. H. M., Vos, V. C. A., & Chauvet, E. (2013). Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecology, 6, 439–448.

    Article  Google Scholar 

  • Jabiol, J., Lecerf, A., Lamothe, S., Gessner, M. O., & Chauvet, E. (2019). Litter quality modulates effects of dissolved nitrogen on leaf decomposition by stream microbial communities. Microbial Ecology, 77, 959–966.

    Article  CAS  PubMed  Google Scholar 

  • Jinggut, T., & Yule, C. M. (2015). Leaf-litter breakdown in streams of East Malaysia (Borneo) along an altitudinal gradient: Initial nitrogen content of litter limits shredder feeding. Freshwater Science, 34, 691–701.

    Article  Google Scholar 

  • Kuehn, K. A. (2016). Lentic and lotic habitats as templets for fungal communities: Traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecology, 19, 135–154.

    Article  Google Scholar 

  • LeRoy, C. J., Hipp, A. L., Lueders, K., Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Lecerf, A., Manning, D. W. P., Sinsabaugh, R. L., & Webster, J. R. (2019). Plant phylogenetic history explains in-stream decomposition at a global scale. Journal of Ecology, 108, 17–35.

    Article  Google Scholar 

  • LeRoy, C. J., Whitham, T. G., Keim, P., & Marks, J. C. (2006). Plant genes link forests and streams. Ecology, 87, 255–261.

    Article  PubMed  Google Scholar 

  • López-Rojo, N., Martínez, A., Pérez, J., Basaguren, A., Pozo, J., & Boyero, L. (2018). Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE, 13, e0198243.

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Rojo, N., Pozo, J., Pérez, J., Basaguren, A., Martínez, A., Tonin, A. M., Correa-Araneda, F., & Boyero, L. (2019). Plant diversity loss affects stream ecosystem multifunctionality. Ecology, 100, e02847.

    Google Scholar 

  • Manzoni, S., Trofymow, J. A., Jackson, R. B., & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89–106.

    Article  Google Scholar 

  • Marks, J. C. (2019). Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology, Evolution, and Systematics, 50, 547–568.

    Article  Google Scholar 

  • Marquis, R. J., Ricklefs, R. E., & Abdala-Roberts, L. (2012). Testing the low latitude/high defense hypothesis for broad-leaved tree species. Oecologia, 169, 811–820.

    Article  PubMed  Google Scholar 

  • Martínez, A., Larrañaga, A., Pérez, J., Descals, E., & Pozo, J. (2014). Temperature affects leaf litter decomposition in low-order forest streams: Field and microcosm approaches. FEMS Microbiology Ecology, 87, 257–267.

    Article  PubMed  Google Scholar 

  • Masese, F. O., Kitaka, N., Kipkemboi, J., Gettel, G. M., Irvine, K., & McClain, M. E. (2014). Macroinvertebrate functional feeding groups in Kenyan highland streams: Evidence for a diverse shredder guild. Freshwater Science, 33, 435–450.

    Article  Google Scholar 

  • Meyer, J. L., Wallace, J. B., & Eggert, S. L. (1998). Leaf litter as a source of dissolved organic carbon in streams. Ecosystems, 1, 240–249.

    Article  CAS  Google Scholar 

  • Mohseni, O., Stefan, H. G., & Eaton, J. G. (2003). Global warming and potential changes in fish habitat in U.S. streams. Climatic Change, 59, 389–409.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E., Gregory, S. V., Grimm, N. B., Johnson, S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., … Thomas, S. M. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452, 202–205.

    Article  CAS  PubMed  Google Scholar 

  • Neukom, R., Steiger, N., Gomez-Navarro, J. J., Wang, J., & Werner, J. P. (2019). No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 571, 550–554.

    Article  CAS  PubMed  Google Scholar 

  • Pascoal, C., Cassio, F., Marcotegui, A., Sanz, B., & Gomes, P. (2005). Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. Journal of the North American Benthological Society, 24, 784–797.

    Article  Google Scholar 

  • Pennings, S. C., & Bertness, M. D. (1999). Using latitudinal variation to examine effects of climate on coastal salt marsh pattern and process. Current Topics in Wetland Biogeochemistry, 3, 100–111.

    Google Scholar 

  • Pérez, J., Descals, E., & Pozo, J. (2012). Aquatic hyphomycete communities associated with decomposing alder leaf litter in reference headwater streams of the Basque Country (northern Spain). Microbial Ecology, 64, 279–290.

    Article  PubMed  Google Scholar 

  • Peterson, B. J., Hobbie, J. E., & Corliss, T. L. (1986). Carblon flow in a tundra stream ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1259–1270.

    Article  Google Scholar 

  • Pettit, N. E., Davies, T., Fellman, J. B., Grierson, P. F., Warfe, D. M., & Davies, P. M. (2011). Leaf litter chemistry, decomposition and assimilation by macroinvertebrates in two tropical streams. Hydrobiologia, 680, 63–77.

    Article  Google Scholar 

  • Pitelka, L. F., & Group, P. M. W. (1997). Plant migration and climate change. American Scientist, 86, 464–473.

    Google Scholar 

  • Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences United State of America, 101, 11001–11006.

    Article  CAS  Google Scholar 

  • Robinson, C. T., Gessner, M. O., & Ward, J. V. (1998). Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshwater Biology, 40, 215–228.

    Article  Google Scholar 

  • Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gullis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347, 1142–1145.

    Article  CAS  PubMed  Google Scholar 

  • Royer, T. V., & Minshall, G. W. (2003). Controls on leaf processing in streams from spatial-scaling and hierarchical perspectives. Journal of the North American Benthological Society, 22, 352–358.

    Article  Google Scholar 

  • Rueda-Delgado, G., Wantzen, K. M., & Tolosa, M. B. (2006). Leaf-litter decomposition in an Amazonian floodplain stream: Effects of seasonal hydrological changes. Journal of the North American Benthological Society, 25, 233–249.

    Article  Google Scholar 

  • Sabater, S., Bregoli, F., Acuna, V., Barcelo, D., Elosegi, A., Ginebreda, A., Marce, R., Munoz, I., Sabater-Liesa, L., & Ferreira, V. (2018). Effects of human-driven water stress on river ecosystems: A meta-analysis. Scientific Reports, 8, 11462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiller, D., Datry, T., Corti, R., Foulquier, A., Tockner, K., Marcé, R., García-Baquero, G., Odriozola, I., Obrador, B., Elosegi, A., Mendoza-Lera, C., Gessner, M. O., Stubbington, R., Albariño, R., Allen, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., … Zoppini, A. (2019). Sediment respiration pulses in intermittent rivers and ephemeral streams. Global Biogeochemical Cycles, 33(10), 1251–1263.

    Google Scholar 

  • Schmidt, K., Blanchette, M., Pearson, R. G., Alford, R. A., & Davis, A. M. (2017). Trophic roles of tadpoles in tropical Australian streams. Freshwater Biology, 62, 1929–1941.

    CAS  Google Scholar 

  • Seena, S., Bärlocher, F., Sobral, O., Gessner, M. O., Dudgeon, D., McKie, B. G., Chauvet, E., Boyero, L., Ferreira, V., Frainer, A., Bruder, A., Matthaei, C. D., Fenoglio, S., Sridhar, K. R., Albarino, R. J., Douglas, M. M., Encalada, A. C., Garcia, E., Ghate, S. D., … Graça, M. A. S. (2019). Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Science of the Total Environment, 661, 306–315.

    Article  CAS  Google Scholar 

  • Shumilova, O., Zak, D., Datry, T., von Schiller, D., Corti, R., Foulquier, A., Obrador, B., Tockner, K., Allan, D.C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M.L., Blanco-Libreros, J.F., Blessing, J., Boechat, I.G., … Zarfl, C. (2019). Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Global Change Biology, 25(5), 1591–1611.

    Google Scholar 

  • Smith, S. D., Devitt, D. A., Sala, A., Cleverly, J. R., & Busch, D. E. (1998). Water relations of riparian plants from warm desert regions. Wetlands, 18, 687–696.

    Article  Google Scholar 

  • Stout, R. J. (1989). Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: A theoretical approach. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1097–1106.

    Article  CAS  Google Scholar 

  • Suberkropp, K. (1991). Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycological Research, 95, 843–850.

    Article  Google Scholar 

  • Suberkropp, K. (1998). Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycological Research, 102, 998–1002.

    Article  CAS  Google Scholar 

  • Suberkropp, K., & Chauvet, E. (1995). Regulation of leaf breakdown by fungi in streams: Influences of water chemistry. Ecology, 76, 1433–1445.

    Article  Google Scholar 

  • Suberkropp, K., Gulis, V., Rosemond, A. D., & Benstead, J. P. (2010). Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: Results of a 5-year continuous enrichment. Limnology and Oceanography, 55, 149–160.

    Article  Google Scholar 

  • Suberkropp, K., & Klug, M. J. (1980). The maceration of deciduous leaf litter by aquatic hyphomycetes. Canadian Journal of Botany, 58, 1025–1031.

    Article  CAS  Google Scholar 

  • Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., & Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29, 118–146.

    Article  Google Scholar 

  • Tenkiano, N. S. D., & Chauvet, E. (2018). Leaf litter decomposition in Guinean savannah streams. Inland Waters, 8, 413–421.

    Article  Google Scholar 

  • Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P. B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuña, V., Albariño, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Barbosa, M. V. M., Barmuta, L. A., Baxter, C. V., … Zwart, J.A. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 5, eaav0486.

    Google Scholar 

  • Tonin, A. M., Boyero, L., Monroy, S., Basaguren, A., Pérez, J., Pearson, R. G., Cardinale, B. J., Gonçalves, J. F. J., & Pozo, J. (2017). Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Functional Ecology, 31, 1471–1481.

    Article  Google Scholar 

  • Tonin, A. M., Gonçalves, J. F., Jr., Bambi, P., Couceiro, S. R. M., Feitoza, L. A. M., Fontana, L. E., Hamada, N., Hepp, L. U., Lezan-Kowalczuk, V. G., Leite, G. F. M., Lemes-Silva, A. L., Lisboa, L. K., Loureiro, R. C., Martins, R. T., Medeiros, A. O., Morais, P. B., Moretto, Y., Oliveria, P. C. A., Pereira, E. B., … Boyero, L. (2017). Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Scientific Reports, 7, 10799.

    Google Scholar 

  • Tonin, A. M., Hepp, L. U., & Gonçalves, J. F. (2018). Spatial variability of plant litter decomposition in stream networks: From litter bags to watersheds. Ecosystems, 21, 567–581.

    Article  Google Scholar 

  • Tonin, A. M., Pozo, J., Monroy, S., Basaguren, A., Pérez, J., Gonçalves, J. F., Jr., Pearson, R., Cardinale, B. J., & Boyero, L. (2018). Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. Journal of Animal Ecology, 87, 1465–1474.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human Domination of Earth’s Ecosystems. Science, 277, 494–499.

    Article  CAS  Google Scholar 

  • Wallace, J., Eggert, S., Meyer, J., & Webster, J. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102–104.

    Article  CAS  Google Scholar 

  • Wallace, J. B., & Webster, J. R. (1996). The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology, 41, 115–139.

    Article  CAS  PubMed  Google Scholar 

  • Wantzen, K. M., & Wagner, R. (2006). Detritus processing by invertebrate shredders: A neotropical–temperate comparison. Journal of the North American Benthological Society, 25, 216–232.

    Article  Google Scholar 

  • Wantzen, K. M., Wagner, R., & Junk, W. J. (2002). How do plant-herbivore interactions of tree influence coarse detritus processing by shredders in aquatic ecossystems of different latitudes? Verhandlungen der Internationalen Vereinigung für Limnolologie, 28, 815–821.

    Google Scholar 

  • Wantzen, K. M., Wagner, R., Suetfeld, R., & Junk, W. J. (2002). How do plant-herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Verhandlungen der Internationalen Vereinigung für Limnolologie, 28, 815–821.

    Google Scholar 

  • Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17, 567–594.

    Article  Google Scholar 

  • Wild, R., Gücker, B., & Brauns, M. (2019). Agricultural land use alters temporal dynamics and the composition of organic matter in temperate headwater streams. Freshwater Biology, 38, 566–581.

    Article  Google Scholar 

  • Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273–309.

    Article  Google Scholar 

  • Winterbourn, M. J., Rounick, J. S., & Cowie, B. (1981). Are New Zealand stream ecosystems really different? New Zealand Journal of Marine and Freshwater Research, 15, 321–328.

    Article  Google Scholar 

  • Woodward, G., Gessner, M. O., Giller, P. S., Gullis, V., Hladyz, H., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J. O., Nistorescu, M., Pozo, J., Risnoveanu, G., Schindler, M., … Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336, 1438–1440.

    Google Scholar 

  • Wootton, A., Pearson, R. G., & Boyero, L. (2018). Patterns of flow, leaf litter and shredder abundance in a tropical stream. Hydrobiologia, 826, 353–365.

    Article  Google Scholar 

  • Yuan, Z., & Chen, H. Y. H. (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 18, 11–18.

    Article  Google Scholar 

  • Yule, C. M. (1996). Trophic relationships and food webs of the benthic invertebrate fauna of two aseasonal tropical streams on Bougainville Island, Papua New Guinea. Journal of Tropical Ecology, 12, 517–534.

    Article  Google Scholar 

  • Yule, C. M., Leong, M. Y., Liew, K. C., Ratnarajah, L., Schmidt, K., Wong, H. M., Pearson, R. G., & Boyero, L. (2009). Shredders in Malaysia: Abundance and richness are higher in cool upland tropical streams. Journal of the North American Benthological Society, 28, 404–415.

    Article  Google Scholar 

  • Yule, C. M., & Pearson, R. G. (1996). Aseasonality of benthic invertebrates in a tropical stream on Bougainville Island, Papua New Guinea. Archiv für Hydrobiologie, 137, 95–117.

    Article  Google Scholar 

  • Zhang, M., Cheng, X., Geng, Q., Shi, Z., Luo, Y., Xu, X., & Morellato, P. (2019). Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography, 28, 1469–1486.

    Article  Google Scholar 

  • Zúñiga-Cépsedes, B., Zúñiga, M. C., & Chará, J. (2018). The effect of macroinvertebrate exclusion on leaf breakdown rates in two upland Colombian streams. International Journal of Tropical Biology, 66, 457–467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Boyero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyero, L. et al. (2021). Global Patterns of Plant Litter Decomposition in Streams. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_4

Download citation

Publish with us

Policies and ethics