Skip to main content

New Concepts in Pathology

  • Chapter
  • First Online:
Neuroendocrine Neoplasia Management

Abstract

Neuroendocrine neoplasms (NENs) originate from the diffuse neuroendocrine system and, therefore, can arise in every part of the body. In two-thirds of cases, they rise in the gastroenteropancreatic (GEP) tract.

NENs represent a heterogeneous group with variable biological and clinical characteristics. They are usually considered rare neoplasms when compared in terms of incidence with the corresponding non-neuroendocrine neoplasms. NENs represent about 1–2% of the total neoplasms of the gastrointestinal (GI) tract but are of particular diagnostic, prognostic, and therapeutic interest.

The main negative prognostic factors of NENs are the site of the primary tumor [pancreatic NENs (PanNENs) generally have a worse prognosis than NENs in the rectum], the stage according to TNM and the World Health Organization (WHO) histopathological classification, which expresses both the morphological aspect of the tumor cells and their proliferative activity in terms of the number of mitoses or proliferation index (Ki-67).

In PanNENs, for example, Ki-67 labeling index correlates significantly with overall survival and also with disease progression in patients with advanced neoplasms and with tumor recurrence in patients undergoing curative surgery. GEP-NENs are all potentially malignant and are distinguished in tumors and carcinomas.

Tumor grading is defined by both morphology and the proliferative index of the tumor (mitotic index and Ki-67).

According to the aforesaid grading rule, WHO 2019 distinguishes: G1-NETs (well-differentiated morphology, <2 mitosis/10 HPF, and/or Ki-67 <3%); G2-NETs (well-differentiated morphology, 2–20 mitosis/10 HPF, and/or Ki-67 between 3% and 20%); G3-NET (well-differentiated morphology, >20 mitosis/10 HPF, and/or Ki-67 >20%); and NEC (poorly differentiated morphology, >20 mitosis/10 HPF, and/or Ki-67 >20%).

MiNENs (mixed neuroendocrine non-neuroendocrine neoplasms) are neoplasms in which the two components, neuroendocrine and non-neuroendocrine, are both represented in at least 30% of the entire tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bosman F, Hruban R, Theise N, et al. WHO classification of tumours of the digestive system. Lyon: IARC Press; 2010.

    Google Scholar 

  3. Klimstra DS, Kloppell G, La Rosa S, Rindi G. Classification of neuroendocrine neoplasms of the digestive system. Digestive system tumours - WHO classification of tumours. 5th ed. Lyon: International Agency for Research on Cancer; 2019.

    Google Scholar 

  4. Lloyd RV, Osamura RY, Klöppel G, Rosai J, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of endocrine organs. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2017. 355 p

    Google Scholar 

  5. Ohike NA, La Rosa S, Volante M, Zamboni G. Mixed neuroendocrine-non neuroendocrine neoplasms. Lion: IARC; 2017.

    Google Scholar 

  6. La Rosa S, Sessa F, Uccella S. Mixed neuroendocrine-nonneuroendocrine neoplasms (MiNENs): unifying the concept of a heterogeneous group of neoplasms. Endocr Pathol. 2016;27(4):284–311.

    Article  PubMed  CAS  Google Scholar 

  7. de Mestier L, Cros J, Neuzillet C, Hentic O, Egal A, Muller N, et al. Digestive system mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrinology. 2017;105(4):412–25.

    Article  PubMed  CAS  Google Scholar 

  8. La Rosa S, Uccella S, Molinari F, Savio A, Mete O, Vanoli A, et al. Mixed adenoma well-differentiated neuroendocrine tumor (MANET) of the digestive system: an indolent subtype of mixed neuroendocrine-nonneuroendocrine neoplasm (MiNEN). Am J Surg Pathol. 2018;42(11):1503–12.

    Article  PubMed  Google Scholar 

  9. Volante M, Rindi G, Papotti M. The grey zone between pure (neuro)endocrine and non-(neuro)endocrine tumours: a comment on concepts and classification of mixed exocrine-endocrine neoplasms. Virchows Arch. 2006;449(5):499–506.

    Article  PubMed  Google Scholar 

  10. Scardoni M, Vittoria E, Volante M, Rusev B, Bersani S, Mafficini A, et al. Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract: targeted next-generation sequencing suggests a monoclonal origin of the two components. Neuroendocrinology. 2014;100(4):310–6.

    Article  CAS  PubMed  Google Scholar 

  11. Volante M, Gatti G, Papotti M. Classification of lung neuroendocrine tumors: lights and shadows. Endocrine. 2015;50(2):315–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fazio N, Milione M. Heterogeneity of grade 3 gastroenteropancreatic neuroendocrine carcinomas: new insights and treatment implications. Cancer Treat Rev. 2016;50:61–7.

    Article  PubMed  Google Scholar 

  13. Velayoudom-Cephise FL, Duvillard P, Foucan L, Hadoux J, Chougnet CN, Leboulleux S, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer. 2013;20(5):649–57.

    Article  PubMed  Google Scholar 

  14. Milione M, Maisonneuve P, Spada F, Pellegrinelli A, Spaggiari P, Albarello L, et al. The clinicopathologic heterogeneity of grade 3 gastroenteropancreatic neuroendocrine neoplasms: morphological differentiation and proliferation identify different prognostic categories. Neuroendocrinology. 2017;104(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  15. La Rosa S, Inzani F, Vanoli A, Klersy C, Dainese L, Rindi G, et al. Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol. 2011;42(10):1373–84.

    Article  PubMed  CAS  Google Scholar 

  16. La Rosa S, Klersy C, Uccella S, Dainese L, Albarello L, Sonzogni A, et al. Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol. 2009;40(1):30–40.

    Article  PubMed  Google Scholar 

  17. La Rosa S, Sessa F, Capella C, Riva C, Leone BE, Klersy C, et al. Prognostic criteria in nonfunctioning pancreatic endocrine tumours. Virchows Arch. 1996;429(6):323–33.

    Article  PubMed  Google Scholar 

  18. Capella C, Heitz PU, Hofler H, Solcia E, Kloppel G. Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch. 1995;425(6):547–60.

    Article  CAS  PubMed  Google Scholar 

  19. Rindi G, Kloppel G. Endocrine tumors of the gut and pancreas tumor biology and classification. Neuroendocrinology. 2004;80(Suppl 1):12–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kloppel G, Rindi G, Perren A, Komminoth P, Klimstra DS. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Arch. 2010;456(6):595–7.

    Article  PubMed  Google Scholar 

  21. Bonert M, Tate AJ. Mitotic counts in breast cancer should be standardized with a uniform sample area. Biomed Eng Online. 2017;16(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milione M. Prognostic factors for gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): what’s better? Endocrine. 2018;59(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  23. Milione M, Fazio N. G3 GEP NENs category: are basic and clinical investigations well integrated? Endocrine. 2018;60(1):28–30.

    Article  CAS  PubMed  Google Scholar 

  24. Milione M, Maisonneuve P, Pellegrinelli A, Grillo F, Albarello L, Spaggiari P, et al. Ki67 proliferative index of the neuroendocrine component drives MANEC prognosis. Endocr Relat Cancer. 2018;25(5):583–93.

    Article  CAS  PubMed  Google Scholar 

  25. Milione M, Maisonneuve P, Pellegrinelli A, Spaggiari P, Centonze G, Coppa J, et al. Ki-67 and presence of liver metastases identify different progression-risk classes in pancreatic neuroendocrine neoplasms (pNEN) undergoing resection. Eur J Surg Oncol. 2019;45(5):755–60.

    Article  PubMed  Google Scholar 

  26. Milione M, Miceli R, Barretta F, Pellegrinelli A, Spaggiari P, Tagliabue G, et al. Microenvironment and tumor inflammatory features improve prognostic prediction in gastro-entero-pancreatic neuroendocrine neoplasms. J Pathol Clin Res. 2019;5(4):217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rigaud G, Moore PS, Zamboni G, Orlandini S, Taruscio D, Paradisi S, et al. Allelotype of pancreatic acinar cell carcinoma. Int J Cancer. 2000;88(5):772–7.

    Article  CAS  PubMed  Google Scholar 

  28. Busico A, Maisonneuve P, Prinzi N, Pusceddu S, Centonze G, Garzone G, et al. Gastroenteropancreatic High-Grade Neuroendocrine Neoplasms (H-NENs): histology and molecular analysis, two sides of the same coin. Neuroendocrinology. 2020;110(7–8):616–29.

    Article  CAS  PubMed  Google Scholar 

  29. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Travis WD, Brambilla E, Burke A, Marx A, Nicholson AG. International Agency for Research on Cancer. WHO classification of tumours of the lung, pleura, thymus and heart. Lyon: International Agency for Research on Cancer; 2015. 412 p

    Google Scholar 

  31. Caplin ME, Baudin E, Ferolla P, Filosso P, Garcia-Yuste M, Lim E, et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015;26(8):1604–20.

    Article  CAS  PubMed  Google Scholar 

  32. Aslan DL, Gulbahce HE, Pambuccian SE, Manivel JC, Jessurun J. Ki-67 immunoreactivity in the differential diagnosis of pulmonary neuroendocrine neoplasms in specimens with extensive crush artifact. Am J Clin Pathol. 2005;123(6):874–8.

    Article  CAS  PubMed  Google Scholar 

  33. Pelosi G, Rodriguez J, Viale G, Rosai J. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol. 2005;29(2):179–87.

    Article  PubMed  Google Scholar 

  34. Pelosi G, Fabbri A, Cossa M, Sonzogni A, Valeri B, Righi L, et al. What clinicians are asking pathologists when dealing with lung neuroendocrine neoplasms? Semin Diagn Pathol. 2015;32(6):469–79.

    Article  PubMed  Google Scholar 

  35. Rindi G, Klersy C, Inzani F, Fellegara G, Ampollini L, Ardizzoni A, et al. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer. 2014;21(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  36. Righi L, Gatti G, Volante M, Papotti M. Lung neuroendocrine tumors: pathological characteristics. J Thorac Dis. 2017;9(Suppl 15):S1442–S7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oka N, Kasajima A, Konukiewitz B, Sakurada A, Okada Y, Kameya T, et al. Classification and prognostic stratification of bronchopulmonary neuroendocrine neoplasms. Neuroendocrinology. 2019;110(5):393–403.

    Article  PubMed  CAS  Google Scholar 

  38. Brierley J, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. Chichester, West Sussex, UK; Hoboken, NJ: Wiley; 2017. xviii, 253 p

    Google Scholar 

  39. Rindi G, Kloppel G, Couvelard A, Komminoth P, Korner M, Lopes JM, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451(4):757–62.

    Article  CAS  PubMed  Google Scholar 

  40. Rindi G, Kloppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449(4):395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pavel M, Baudin E, Couvelard A, Krenning E, Oberg K, Steinmuller T, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Carbonero R, Sorbye H, Baudin E, Raymond E, Wiedenmann B, Niederle B, et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology. 2016;103(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  43. Phan AT, Oberg K, Choi J, Harrison LH Jr, Hassan MM, Strosberg JR, et al. NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the thorax (includes lung and thymus). Pancreas. 2010;39(6):784–98.

    Article  PubMed  Google Scholar 

  44. Eberhardt WE, Mitchell A, Crowley J, Kondo H, Kim YT, Turrisi A 3rd, et al. The IASLC lung cancer staging project: proposals for the revision of the M descriptors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2015;10(11):1515–22.

    Article  PubMed  Google Scholar 

  45. Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39(5):683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heetfeld M, Chougnet CN, Olsen IH, Rinke A, Borbath I, Crespo G, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657–64.

    Article  CAS  PubMed  Google Scholar 

  47. Sonbol MB, Halfdanarson TR. Management of well-differentiated high-grade (G3) neuroendocrine tumors. Curr Treat Options in Oncol. 2019;20(9):74.

    Article  Google Scholar 

  48. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24(1):152–60.

    Article  CAS  PubMed  Google Scholar 

  49. Tang LH, Untch BR, Reidy DL, O’Reilly E, Dhall D, Jih L, et al. Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res. 2016;22(4):1011–7.

    Article  CAS  PubMed  Google Scholar 

  50. Spada F, Antonuzzo L, Marconcini R, Radice D, Antonuzzo A, Ricci S, et al. Oxaliplatin-based chemotherapy in advanced neuroendocrine tumors: clinical outcomes and preliminary correlation with biological factors. Neuroendocrinology. 2016;103(6):806–14.

    Article  CAS  PubMed  Google Scholar 

  51. Bajetta E, Catena L, Biondani P, Pusceddu S, Valente M, Bianco N, et al. Activity of a three-drug combination including cisplatin (CLOVER regimen) for poorly differentiated neuroendocrine carcinoma. Anticancer Res. 2014;34(10):5657–60.

    CAS  PubMed  Google Scholar 

  52. Bajetta E, Catena L, Procopio G, De Dosso S, Bichisao E, Ferrari L, et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother Pharmacol. 2007;59(5):637–42.

    Article  CAS  PubMed  Google Scholar 

  53. Kunz PL, Balise RR, Fehrenbacher L, Pan M, Venook AP, Fisher GA, et al. Oxaliplatin-fluoropyrimidine chemotherapy plus bevacizumab in advanced neuroendocrine tumors: an analysis of 2 phase II trials. Pancreas. 2016;45(10):1394–400.

    Article  CAS  PubMed  Google Scholar 

  54. Tang LH. Hystopathology Net G3 versus NEC G3. In: Spain tAEcftdattoNTD-MB, editor. 2016.

    Google Scholar 

  55. Ferrata M, Schad A, Zimmer S, Musholt TJ, Bahr K, Kuenzel J, et al. PD-L1 expression and immune cell infiltration in gastroenteropancreatic (GEP) and non-GEP neuroendocrine neoplasms with high proliferative activity. Front Oncol. 2019;9:343.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Weber MM, Fottner C. Immune checkpoint inhibitors in the treatment of patients with neuroendocrine neoplasia. Oncol Res Treat. 2018;41(5):306–12.

    Article  PubMed  Google Scholar 

  57. Takahashi D, Kojima M, Suzuki T, Sugimoto M, Kobayashi S, Takahashi S, et al. Profiling the tumour immune microenvironment in pancreatic neuroendocrine neoplasms with multispectral imaging indicates distinct subpopulation characteristics concordant with WHO 2017 classification. Sci Rep. 2018;8(1):13166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hijioka S, Hosoda W, Mizuno N, Hara K, Imaoka H, Bhatia V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas? J Gastroenterol. 2015;50(5):564–72.

    Article  CAS  PubMed  Google Scholar 

  59. Agaimy A, Erlenbach-Wunsch K, Konukiewitz B, Schmitt AM, Rieker RJ, Vieth M, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol. 2013;26(7):995–1003.

    Article  CAS  PubMed  Google Scholar 

  60. Rinke A, Gress TM. Neuroendocrine cancer, therapeutic strategies in G3 cancers. Digestion. 2017;95(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  61. Sorbye H, Baudin E, Perren A. The problem of high-grade gastroenteropancreatic neuroendocrine neoplasms: well-differentiated neuroendocrine tumors, neuroendocrine carcinomas, and beyond. Endocrinol Metab Clin N Am. 2018;47(3):683–98.

    Article  Google Scholar 

  62. Sorbye H, Baudin E, Borbath I, Caplin M, Chen J, Cwikla JB, et al. Unmet needs in high-grade gastroenteropancreatic neuroendocrine neoplasms (WHO G3). Neuroendocrinology. 2019;108(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  63. Cives M, Pelle E, Quaresmini D, Rizzo FM, Tucci M, Silvestris F. The tumor microenvironment in neuroendocrine tumors: biology and therapeutic implications. Neuroendocrinology. 2019;109(2):83–99.

    Article  CAS  PubMed  Google Scholar 

  64. Bellizzi AM. Immunohistochemistry in the diagnosis and classification of neuroendocrine neoplasms: what can brown do for you? Hum Pathol. 2020;96:8–33.

    Article  PubMed  Google Scholar 

  65. Kleist B, Poetsch M. Neuroendocrine differentiation: the mysterious fellow of colorectal cancer. World J Gastroenterol. 2015;21(41):11740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grabowski P, Schonfelder J, Ahnert-Hilger G, Foss HD, Heine B, Schindler I, et al. Expression of neuroendocrine markers: a signature of human undifferentiated carcinoma of the colon and rectum. Virchows Arch. 2002;441(3):256–63.

    Article  CAS  PubMed  Google Scholar 

  67. Lloyd RV, Schroeder G, Bauman MD, Krook JE, Jin L, Goldberg RM, et al. Prevalence and prognostic significance of neuroendocrine differentiation in colorectal carcinomas. Endocr Pathol. 1998;9(1):35–42.

    Article  PubMed  Google Scholar 

  68. Hamada Y, Oishi A, Shoji T, Takada H, Yamamura M, Hioki K, et al. Endocrine cells and prognosis in patients with colorectal carcinoma. Cancer. 1992;69(11):2641–6.

    Article  CAS  PubMed  Google Scholar 

  69. Jansson D, Gould VE, Gooch GT, Rittenhouse HG, Shin SS, Manderino GL, et al. Immunohistochemical analysis of colon carcinomas applying exocrine and neuroendocrine markers. APMIS. 1988;96(12):1129–39.

    Article  CAS  PubMed  Google Scholar 

  70. Rehfeld JF. A centenary of gastrointestinal endocrinology. Horm Metab Res. 2004;36(11–12):735–41.

    Article  CAS  PubMed  Google Scholar 

  71. Cho YB, Yang SS, Lee WY, Song SY, Kim SH, Shin HJ, et al. The clinical significance of neuroendocrine differentiation in T3-T4 node-negative colorectal cancer. Int J Surg Pathol. 2010;18(3):201–6.

    Article  PubMed  Google Scholar 

  72. Smith DM Jr, Haggitt RC. The prevalence and prognostic significance of argyrophil cells in colorectal carcinomas. Am J Surg Pathol. 1984;8(2):123–8.

    Article  PubMed  Google Scholar 

  73. Sun MH. Neuroendocrine differentiation in sporadic CRC and hereditary nonpolyosis colorectal cancer. Dis Markers. 2004;20(4–5):283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yao GY, Zhou JL, Lai MD, Chen XQ, Chen PH. Neuroendocrine markers in adenocarcinomas: an investigation of 356 cases. World J Gastroenterol. 2003;9(4):858–61.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Indinnimeo M, Cicchini C, Memeo L, Stazi A, Provenza C, Ricci F, et al. Correlation between chromogranin-a expression and pathological variables in human colon carcinoma. Anticancer Res. 2002;22(1A):395–8.

    PubMed  Google Scholar 

  76. Foley EF, Gaffey MJ, Frierson HF Jr. The frequency and clinical significance of neuroendocrine cells within stage III adenocarcinomas of the colon. Arch Pathol Lab Med. 1998;122(10):912–4.

    CAS  PubMed  Google Scholar 

  77. Pagani A, Papotti M, Abbona GC, Bussolati G. Chromogranin gene expressions in colorectal adenocarcinomas. Mod Pathol. 1995;8(6):626–32.

    CAS  PubMed  Google Scholar 

  78. Shinji S, Naito Z, Ishiwata T, Tanaka N, Furukawa K, Suzuki H, et al. Neuroendocrine cell differentiation of poorly differentiated colorectal adenocarcinoma correlates with liver metastasis. Int J Oncol. 2006;29(2):357–64.

    CAS  PubMed  Google Scholar 

  79. Staren ED, Gould VE, Jansson DS, Hyser M, Gooch GT, Economou SG. Neuroendocrine differentiation in “poorly differentiated” colon carcinomas. Am Surg. 1990;56(7):412–9.

    CAS  PubMed  Google Scholar 

  80. Shia J, Guillem JG, Moore HG, Tickoo SK, Qin J, Ruo L, et al. Patterns of morphologic alteration in residual rectal carcinoma following preoperative chemoradiation and their association with long-term outcome. Am J Surg Pathol. 2004;28(2):215–23.

    Article  PubMed  Google Scholar 

  81. Shia J, Tickoo SK, Guillem JG, Qin J, Nissan A, Hoos A, et al. Increased endocrine cells in treated rectal adenocarcinomas: a possible reflection of endocrine differentiation in tumor cells induced by chemotherapy and radiotherapy. Am J Surg Pathol. 2002;26(7):863–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Milione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milione, M., Cattaneo, L., Mangogna, A. (2021). New Concepts in Pathology. In: Beretta, G., Berruti, A., Bombardieri, E., Fazio, N., Goletti, O. (eds) Neuroendocrine Neoplasia Management. Springer, Cham. https://doi.org/10.1007/978-3-030-72830-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72830-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72829-8

  • Online ISBN: 978-3-030-72830-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics