Skip to main content

Intelligent Interactive Technologies for Mental Health and Well-Being

  • Chapter
  • First Online:
Artificial Intelligence: Theory and Applications

Abstract

Mental healthcare has seen numerous benefits from interactive technologies and artificial intelligence. Various interventions have successfully used intelligent technologies to automate the assessment and evaluation of psychological treatments and mental well-being and functioning. These technologies include different types of robots, video games, and conversational agents. The paper critically analyzes existing solutions with the outlooks for their future. In particular, we: (i) give an overview of the technology for mental health, (ii) critically analyze the technology against the proposed criteria, and (iii) provide the design outlooks for these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unity game engine: https://unity.com/ (Retrieved on Dec 25, 2020).

  2. 2.

    Exploring new ways to simulate the coronavirus spread: https://bit.ly/37PQWYG (Retrieved on Dec 25, 2020).

  3. 3.

    Unity Machine Learning Agents: https://bit.ly/34RG2zM (Retrieved on Dec 25, 2020).

  4. 4.

    Training a performant object detection ML model on synthetic data using Unity Perception tools: https://bit.ly/3hjoLVl (Retrieved on Dec 25, 2020).

  5. 5.

    Use Unity’s perception tools to generate and analyze synthetic data at scale to train your ML models: https://bit.ly/3rwofrt (Retrieved on Dec 25, 2020).

  6. 6.

    The interactive cards with practical examples of the guidelines: https://bit.ly/3b3VMUr (Retrieved on Dec 25, 2020).

References

  1. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (2019)

    Article  Google Scholar 

  2. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. 9(4), (2019)

    Google Scholar 

  3. Killgore, W.D., Cloonen, S.A., Taylor, E.C., Dailey, N.S.: Loneliness: a signature mental health concern in the era of COVID-19. Psych. Res. 113117, (2020)

    Google Scholar 

  4. Rossi, A., Panzeri, A., Pietrabissa, G., Manzoni, G.M., Castelnuovo, G., Mannarini, S.: The anxiety-buffer hypothesis in the time of COVID-19: when self-esteem protects from the impact of loneliness and fear on anxiety and depression. Front. Psychol. 11 (2020)

    Google Scholar 

  5. Ebert, D.D., Cuijpers, P., Munoz, R.F., Baumeister, H.: Prevention of mental health disorders using internet-and mobile-based interventions: a narrative review and recommendations for future research. Front. Psych. 8, 116 (2017)

    Article  Google Scholar 

  6. Fitzpatrick, K.K., Darcy, A., Vierhile, M.: Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Heal. 4(2) (2017)

    Google Scholar 

  7. Dragoni, M., Donadello, I., Eccher, C.: Explainable AI meets persuasiveness: translating reasoning results into behavioral change advice. Artif. Intell. Med. 101840 (2020)

    Google Scholar 

  8. Wainer, J., et al.: A pilot study with a novel setup for collaborative play of the humanoid robot KASPAR with children with autism. Int. J. Soc. Robot. 6(1), 45–65 (2014)

    Article  Google Scholar 

  9. Zheng, Z., et al.: Robot-mediated imitation skill training for children with autism. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 682–691 (2015)

    Article  Google Scholar 

  10. Kim, E.S., et al.: Social robots as embedded reinforcers of social behavior in children with autism. J. Aut. Dev. Disord. 43(5), 1038–1049 (2013)

    Article  Google Scholar 

  11. DE-Enigma: Playfully empowering autistic children. EC-funded research project. http://de-enigma.eu/. Cited 25 Dec 2020

  12. DREAM: Development of Robot-Enhanced therapy for children with AutisM spectrum disorders. EC-funded research project. https://www.dream2020.eu. Cited 25 Dec 2020

  13. Scoglio, A.A., Reilly, E.D., Gorman, J.A., Drebing, C.E.: Use of social robots in mental health and well-being research: Systematic review. J. Med. Internet Res. 21(7) (2019). https://doi.org/10.2196/13322

  14. Desideri, L., Negrini, M., Malavasi, M., Tanzini, D., Rouame, A., Cutrone, M.C., Bonifacci, P., Hoogerwerf, E.-J.: Using a humanoid robot as a complement to interventions for children with autism spectrum disorder: A pilot study. Adv. Neurodev. Disord. 2(3), 273–285 (2018). https://doi.org/10.1007/s41252-018-0066-4

    Article  Google Scholar 

  15. Robinson N.L., Connolly J., Hides L., Kavanagh D.J.: A Social Robot to Deliver an 8-Week Intervention for Diabetes Management: Initial Test of Feasibility in a Hospital Clinic. In: Wagner A.R. et al. (eds) Social Robotics. ICSR 2020. Lecture Notes in Computer Science, vol. 12483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62056-1_52

  16. Sánchez, S. M., Mora-Simon, S., Herrera-Santos, J., Roncero, A. O., Corchado, J. M.: Intelligent Dolls and robots for the treatment of elderly people with dementia. ADCAIJ: Adv. Distrib. Computi. Artif. Intell. J. 9(1), 99–112 (2020)

    Google Scholar 

  17. Aslam, S., Standen, P. J., Shopland, N., Burton, A., Brown, D.: A comparison of humanoid and non-humanoid robots in supporting the learning of pupils with severe intellectual disabilities (2016)

    Google Scholar 

  18. Assad-Uz-Zaman, M., Rasedul Islam, M., Miah, S., Rahman, M.H.: NAO robot for cooperative rehabilitation training. J. Rehabil. Assist. Technol. Eng. 6, 2055668319862151 (2019)

    Google Scholar 

  19. Trost, M.J., Ford, A.R., Kysh, L., Gold, J.I., Matarić, M.: Socially assistive robots for helping pediatric distress and pain. Clin. J. Pain 35(5), 451–458 (2019)

    Article  Google Scholar 

  20. Egido-García, V., Estévez, D., Corrales-Paredes, A., Terrón-López, M.-J., Velasco-Quintana, P.-J.: Integration of a social robot in a pedagogical and logopedic intervention with children: a case study. Sensors 20(22), 6483 (2020). https://doi.org/10.3390/s20226483

    Article  Google Scholar 

  21. Polycarpou, Panayiota Andreeva, Anna Ioannou, Andri Zaphiris, Panayiotis.: Don’t Read My Lips: Assessing Listening and Speaking Skills Through Play with a Humanoid Robot. HCI International 2016 – Posters’ Extended Abstracts, 618. 255-260. (2016) https://10.1007/978-3-319-40542-1\_41

    Google Scholar 

  22. Manzi, F., Massaro, D., Di Lernia, D., Maggioni, M.A., Riva, G., Marchetti, A.: Robots Are Not All the Same: Young Adults’ Expectations, Attitudes, and Mental Attribution to Two Humanoid Social Robots. Behavior, and Social Networking, Cyberpsychology (2020)

    Google Scholar 

  23. Jeong, S., Breazeal, C., Logan, D., Weinstock, P.: Huggable: The impact of embodiment on promoting socio-emotional interactions for young pediatric inpatients. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2018). https://doi.org/10.1145/3173574.3174069

  24. Westlund, J. K. et al.,: Tega: A social robot. In: 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 561–561 (2016). https://doi.org/10.1109/HRI.2016.7451856

  25. Aghel Manesh, S., Beran, T., Sharlin, E., Greenberg, S.: Medi, human robot interaction in pediatric health. In: CHI -14 Extended Abstracts on Human Factors in Computing Systems, pp. 153–154 (2014). https://doi.org/10.1145/2559206.2579529

  26. THERAPIST: Towards an autonomous socially interactive robot for motor and neurorehabilitation therapies for children. JMIR Rehabil. Assist. Technol. (2014)

    Google Scholar 

  27. Shimaya, J., Yoshikawa, Y., Matsumoto, Y., Kumazaki, H., Ishiguro, H., Mimura, M., Miyao, M.: Advantages of indirect conversation via a desktop humanoid robot: case study on daily life guidance for adolescents with autism spectrum disorders (2016). https://doi.org/10.1109/roman.2016.7745215

  28. Kumazaki, H., Warren, Z., Corbett, B.A., Yoshikawa, Y., Matsumoto, Y., Higashida, H., Kikuchi, M.: Android robot-mediated mock job interview sessions for young adults with autism spectrum disorder: a pilot study. Front. Psych. 8, 169 (2017)

    Article  Google Scholar 

  29. Giannopulu, I., Montreynaud, V., Watanabe, T.: Minimalistic toy robot to analyze a scenery of speaker-listener condition in autism. Cognit. Process. 17(2), 195–203 (2016). https://doi.org/10.1007/s10339-016-0752-y

    Article  Google Scholar 

  30. Giannopulu, I., Montreynaud, V., Watanabe, T.: Neurotypical and autistic children aged 6 to 7 years in a speaker-listener situation with a human or a minimalist InterActor robot. In: Proceedings of IEEE RO-MAN, pp. 942–947 (2014)

    Google Scholar 

  31. Poppy Project - Open source robotic platform. https://www.poppy-project.org/. Cited 25 Dec 2020

  32. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition (2008)

    Google Scholar 

  33. Sproewitz, A., Kuechler, L., Tuleu, A., Ajallooeian, M., D’Haene, M., Moeckel, R., Ijspeert, A.: Oncilla robot: a light-weight bio-inspired quadruped robot for fast locomotion in rough terrain (2011)

    Google Scholar 

  34. Zhao, N., Zhang, Z., Wang, Y., Wang, J., Li, B., et al.: See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data (2019). https://doi.org/10.1371/journal.pone.0216591

  35. Fan, J., Beuscher, L., Newhouse, P. A., Mion, L. C., Sarkar, N.: A robotic coach architecture for multi-user human-robot interaction (RAMU) with the elderly and cognitively impaired (2016). https://doi.org/10.1109/roman.2016.7745157

  36. Tapus, A.: The role of the physical embodiment of a music therapist robot for individuals with cognitive impairments: Longitudinal study. In: Virtual Rehabilitation International Conference, Haifa (2009)

    Google Scholar 

  37. Cavallo, F., Esposito, R., Limosani, R., Manzi, A., Bevilacqua, R., Felici, E., Di Nuovo, A., Cangelosi, A., Lattanzio, F., Dario, P.: Robotic services acceptance in smart environments with older adults: user satisfaction and acceptability study. J. Med. Internet Res. 20(9), e264 (2018)

    Google Scholar 

  38. Kang, H.S., Makimoto, K., Konno, R., Koh, I.S.: Review of outcome measures in PARO robot intervention studies for dementia care. Geriat. Nurs. 41(3), 207–214 (2020). https://doi.org/10.1016/j.gerinurse.2019.09.003

    Article  Google Scholar 

  39. Low, J.T.S.: LECABot, mini robot companion for elderly (2020)

    Google Scholar 

  40. Kuwamura, K., Nishio, S., Sato, S.: Can we talk through a robot as if face-to-face? Long-term fieldwork using teleoperated robot for seniors with Alzheimer’s disease. Front. Psychol. 7, 1066 (2016)

    Article  Google Scholar 

  41. Orlandini, A., Kri‘ffersson, A., Almquist, L., Björkman, P., Cesta, A., Cortellessa, G., ... Loutfi, A.: Excite project: A review of forty-two months of robotic telepresence technology evolution. Presence: Teleoper. Virtual Environ. 25(3), 204–221 (2016)

    Google Scholar 

  42. Alvarez, J., Campos, G., Enríquez, V., Miranda, A., Rodriguez, F., Ponce, H.: Nurse-bot: a robot system applied to medical assistance. In: 2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 56–59. IEEE (2018)

    Google Scholar 

  43. Hortensius, R., Hekele, F., Cross, E.S.: The perception of emotion in artificial agents. IEEE Trans. Cognit. Dev. Syst. 10(4), 852–864 (2018)

    Article  Google Scholar 

  44. Porayska-Pomsta, K., et al.: Blending human and artificial intelligence to support autistic children’s social communication skills. ACM Trans. Comput.-Hum. Interact. (TOCHI) 25(6), 35 (2018)

    Article  Google Scholar 

  45. Tsikinas, S., Xinogalos, S.: Studying the effects of computer serious games on people with intellectual disabilities or autism spectrum disorder: a systematic literature review. J. Comput. Assist. Learn. 35(1), 61–73 (2019)

    Article  Google Scholar 

  46. Malinverni, L., et al.: An inclusive design approach for developing video games for children with autism spectrum disorder. Comput. Hum. Behav. 71, 535–549 (2017)

    Article  Google Scholar 

  47. Ip, H.H., et al.: Enhance emotional and social adaptation skills for children with autism spectrum disorder: a virtual reality enabled approach. Comput. Educ. 117, 1–15 (2018)

    Article  Google Scholar 

  48. Grossard, C., Grynspan, O., Serret, S., Jouen, A. L., Bailly, K., Cohen, D.: Serious games to teach social interactions and emotions to individuals with autism spectrum disorders. ASD Computers & Education, 113, pp. (2017)

    Google Scholar 

  49. Chen, J., et al.: A pilot study on evaluating children with autism spectrum disorder using computer games. Comput. Hum. Behav. 90, 204–214 (2019)

    Article  Google Scholar 

  50. Cheng, V.W.S., Davenport, T., Johnson, D., Vella, K., Hickie, I.B.: Gamification in apps and technologies for improving mental health and well-being: systematic review. JMIR Ment. Heal. 6(6) (2019)

    Google Scholar 

  51. Ballesteros, S., Kraft, E., Santana, S., Tziraki, C.: Maintaining older brain functionality: a targeted review. Neurosci. Biobehav. Rev. 55, 453–477 (2015)

    Article  Google Scholar 

  52. Pallavicini, F., Ferrari, A., Mantovani, F.: Video games for well-being: a systematic review on the application of computer games for cognitive and emotional training in the adult population. Front. Psychol. 9, 2127 (2018)

    Article  Google Scholar 

  53. Hutchinson, C.V., Barrett, D.J., Nitka, A., Raynes, K.: Action video game training reduces the Simon Effect. Psychon. Bull. Rev. 23(2), 587–592 (2016)

    Article  Google Scholar 

  54. Clemenson, G.D., Stark, C.E.: Virtual environmental enrichment through video games improves hippocampal-associated memory. J. Neurosci. 35(49), 16116–16125 (2015)

    Article  Google Scholar 

  55. Villani, D., Carissoli, C., Triberti, S., Marchetti, A., Gilli, G., Riva, G.: Video games for emotion regulation: a systematic review. Games for Heal. J. 7(2), 85–99 (2018)

    Article  Google Scholar 

  56. Colder Carras, M., Van Rooij, A.J., Spruijt-Metz, D., Kvedar, J., Griffiths, M.D., Carabas, Y., Labrique, A.: Commercial video games as therapy: a new research agenda to unlock the potential of a global pastime. Front. Psych. 8, 300 (2018)

    Article  Google Scholar 

  57. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining “gamification”. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, pp. 9–15 (2011)

    Google Scholar 

  58. Floryan, M., Chow, P.I., Schueller, S.M., Ritterband, L.M.: The model of gamification principles for digital health interventions: evaluation of validity and potential utility. J. Med. Internet Res. 22(6) (2020)

    Google Scholar 

  59. Stoyanov, S.R., Hides, L., Kavanagh, D.J., Zelenko, O., Tjondronegoro, D., Mani, M.: Mobile app rating scale: a new tool for assessing the quality of health mobile apps. JMIR Health Health 3(1) (2015)

    Google Scholar 

  60. Woebot - a text-based, virtual companion who advises people about their mental well-being. https://woebot.io/. Cited 25 Dec 2020

  61. Lee, M., et al.: Caring for Vincent: A Chatbot for Self-Compassion. In Proceedings of the 2019 CHI Conference on Human Factors in Computing System, p. 702. ACM (2019)

    Google Scholar 

  62. Yang, X., Aurisicchio, M., Baxter, W.: Understanding Affective Experiences With Conversational Agents. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, p. 542, ACM. (2019)

    Google Scholar 

  63. Zhou, M.X., et al.: Trusting virtual agents: the effect of personality. ACM Trans. Interact. Intell. Syst. (TiiS) 9(2–3), 10 (2019)

    Google Scholar 

  64. Jain, M., et al.: Evaluating and informing the design of chatbots. In Proceedings of the 2018 Designing Interactive Systems Conference, pp. 895–906. ACM (2018)

    Google Scholar 

  65. Babylon - accessible and affordable health service. https://www.babylonhealth.com/. Cited 25 Dec 2020

  66. Florence - personal health assistant. https://florence.chat/. Cited 25 Dec 2020

  67. Miner, A., et al.: Conversational agents and mental health: Theory-informed assessment of language and affect. In: Proceedings of the 4th ACM Intern. Conf. Human Agent Interaction, pp. 123–130 (2016)

    Google Scholar 

  68. Inkster, B., Sarda, S., Subramanian, V.: An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR mHealth and uHealth 6(11) (2018)

    Google Scholar 

  69. Poria, S., et al.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)

    Article  Google Scholar 

  70. Jackson, P., Haq, S.: Surrey audio-visual expressed emotion (SAVEE) database. University of Surrey, Guildford (2014)

    Google Scholar 

  71. Martin, O., Kotsia, I., Macq, B., Pitas, I.: The eNTERFACE’05 audio-visual emotion database. In: 22nd International Conference on Data Engineering Workshops (ICDEW’06), pp. 8–8. IEEE (2006)

    Google Scholar 

  72. Wang, Y., Guan, L.: Recognizing human emotional state from audiovisual signals. IEEE Trans. Multimed. 10(5), 936–946 (2008)

    Article  Google Scholar 

  73. Correa, J.A.M. et al.: Amigos: a dataset for affect, personality and mood research on individuals and groups (2018)

    Google Scholar 

  74. Song, T., et al.: MPED: a multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7, 12177–12191 (2019)

    Article  Google Scholar 

  75. Ong, D., Wu, Z., Tan, Z. X., Reddan, M., Kahhale, I., Mattek, A., Zaki, J.: Modeling emotion in complex stories: the Stanford Emotional Narratives Dataset (2019)

    Google Scholar 

  76. LIWC (Linguistic Inquiry and Word Count) http://liwc.wpengine.com/. Retrieved on Dec 25, 2020

  77. Schuller, B., et al.: Paralinguistics in speech and language-State-of-the-art and the challenge. Comput. Speech Lang. 27(1), 4–39 (2013)

    Article  MathSciNet  Google Scholar 

  78. Kamińska, D., Sapiński, T., Anbarjafari, G.: Efficiency of chosen speech descriptors in relation to emotion recognition. EURASIP J. Audio Speech Music Process. 3 (2017)

    Google Scholar 

  79. Hwang, I., Lee, Y., Yoo, C., Min, C., Yim, D., Kim, J.: Towards interpersonal assistants: next-generation conversational agents. IEEE Pervas. Comput. 18(2), 21–31 (2019)

    Article  Google Scholar 

  80. Abdul-Kader, S.A., Woods, J.C.: Survey on chatbot design techniques in speech conversation systems. Int. J. Adv. Comput. Sci. Appl. 6(7), 72–80 (2015)

    Google Scholar 

  81. McDuff, D., Girard, J.M., El Kaliouby, R.: Large-scale observational evidence of cross-cultural differences in facial behavior. J. Nonverbal Behav. 41(1), 1–19 (2017)

    Article  Google Scholar 

  82. McDuff, D. et al.: A Multimodal Emotion Sensing Platform for Building Emotion-Aware Applications (2019)

    Google Scholar 

  83. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. Blueprint for Affective Computing - A Sourcebook and Manual, pp. 21–46. Oxford University Press (2010)

    Google Scholar 

  84. Amershi, S. et al.: Guidelines for Human-AI Interaction (2019)

    Google Scholar 

  85. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems,: Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems. Affective Computing, pp. 90–109. First Edition. IEEE (2019). Retrieved on Dec 25, 2020 from https://bit.ly/3pTNtzv

  86. Pearl, J., Mackenzie, D.: The book of why: the new science of cause and effect (2018)

    Google Scholar 

  87. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)

    Article  Google Scholar 

  88. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence. XAI IEEE Access 6, 52138–52160 (2018)

    Google Scholar 

  89. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  90. Nurgalieva, L., O’Callaghan, D., Doherty, G.: Security and privacy of mHealth applications: a scoping review. IEEE Access 8, 104247–104268 (2020)

    Article  Google Scholar 

  91. Broadbent, E.: Interactions with robots: the truths we reveal about ourselves. Ann. Rev. Psychol. 68, 627–652 (2017)

    Article  Google Scholar 

  92. Bardram, J.E., Matic, A.: A decade of ubiquitous computing research in mental health. IEEE Pervas. Comput. 19(1), 62–72 (2020)

    Article  Google Scholar 

  93. McDuff, D., Czerwinski, M.: Designing emotionally sentient agents. Commun. ACM 61(12), 74–83 (2018)

    Article  Google Scholar 

  94. Feine, J., Gnewuch, U., Morana, S., Maedche, A.: A taxonomy of social cues for conversational agents. Int. J. Hum.-Comput. Stud. 132, 138–161 (2019)

    Article  Google Scholar 

  95. Jovanovic, M., Baez, M., Casati, F.: Chatbots as conversational healthcare services. IEEE Internet Computing (2020)

    Google Scholar 

  96. Nadarzynski, T., Miles, O., Cowie, A., Ridge, D.: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study. Digit. Heal. 5 (2019)

    Google Scholar 

  97. Grudin, J., Jacques, R.: Chatbots, Humbots, and the quest for artificial general intelligence. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, p. 209. ACM (2019)

    Google Scholar 

  98. Delorme, A., Rousselet, G.A., Macé, M.J.M., Fabre-Thorpe, M.: Interaction of top-down and bottom-up processing in the fast visual analysis of natural scenes. Cognit. Brain Res. 19(2), 103–113 (2004)

    Article  Google Scholar 

  99. Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., Wu, J.: The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision (2019)

    Google Scholar 

  100. Gaur, M., Faldu, K., Sheth, A.: Semantics of the Black-Box: can knowledge graphs help make deep learning systems more interpretable and explainable? (2020)

    Google Scholar 

  101. Neal, T., Sundararajan, K., Woodard, D.: Exploiting linguistic style as a cognitive biometric for continuous verification. In: 2018 International Conference on Biometrics (ICB), pp. 270–276 (2018). https://doi.org/10.1109/ICB2018.2018.00048

  102. Harms, J.G., Kucherbaev, P., Bozzon, A., Houben, G.J.: Approaches for dialog management in conversational agents. IEEE Internet Comput. 23(2), 13–22 (2019)

    Article  Google Scholar 

  103. Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012). https://doi.org/10.1109/MRA.2012.2192811

    Article  Google Scholar 

  104. Khemapech, I.: Telemedicine-Meaning, Challenges and Opportunities (2019)

    Google Scholar 

  105. Craig, J., Patterson, V.: Introduction to the practice of telemedicine. J. Telemed. Telecare 11(1), 3–9 (2005). https://doi.org/10.1258/1357633053430494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mlađan Jovanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jovanović, M., Jevremović, A., Pejović-Milovančević, M. (2021). Intelligent Interactive Technologies for Mental Health and Well-Being. In: Pap, E. (eds) Artificial Intelligence: Theory and Applications. Studies in Computational Intelligence, vol 973. Springer, Cham. https://doi.org/10.1007/978-3-030-72711-6_18

Download citation

Publish with us

Policies and ethics