Skip to main content

Semantic Image Analysis for Automatic Image Annotation

  • Chapter
  • First Online:
Intelligent Systems in Big Data, Semantic Web and Machine Learning

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1344))

  • 525 Accesses

Abstract

The semantic image analysis is a process aimed to extract automatically the accurate semantic concept from image visual content. In this chapter, we shed light on a study conducted to boost the efficiency of semantic image analysis for improving automatic image annotation. We have explored, in this research study, different aspects of semantic analysis to overcome the semantic gap problem. In the first part of this research study, we evaluated the impact of the way in which the different low level features were associated on image annotation performance. In the second part, the benefit of combining two complementary classifiers for objects classification was investigated. The final part of the research study was devoted to the assessment of the usefulness of regrouping adjacent regions of segmented image for objects discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchakwa, M., Ayadi, Y., Amous, I.: Multi-level diversification approach of semantic-based image retrieval results. Progress Artif. Intell. 9(1), 1–30 (2020)

    Article  Google Scholar 

  2. Potapov, A., et al.: Semantic image retrieval by uniting deep neural networks and cognitive architectures. In: Proceedings of the 11th International Conference on Artificial General Intelligence (AGI), Prague, Czech Republic, pp. 196–206 (2018)

    Google Scholar 

  3. Pratap, R., et al.: A review study—in image retrieval bridging of semantic gap. J. Inf. Tech. Sci. 4(3), 11–15 (2018)

    Google Scholar 

  4. Hirwane, R.: Semantic based image retrieval. Int. J. Adv. Res. Comput. Commun. Eng. 6(4), 120–122 (2017)

    Article  Google Scholar 

  5. Alzubi, A., Amira, A., Ramzan, N.: Semantic content-based image retrieval: a comprehensive study. J. Vis. Commun. Image Represent. 32, 20–54 (2015)

    Article  Google Scholar 

  6. Khodaskara, A., Ladhakeb, S.: Image analysis for intelligent image retrieval. In: International Conference on Intelligent Computing, Communication & Convergence (ICCC), Odisha, India, pp. 192–197 (2015)

    Google Scholar 

  7. Theodosiou, Z., Tsapatsoulis, N.: Image annotation: the effects of content, lexicon and annotation method. Int. J. Multimedia Inf. Retrieval 9, 191–203 (2020)

    Article  Google Scholar 

  8. Zhang, J.: Vision to keywords: automatic image annotation by filling the semantic gap. Thesis (2019)

    Google Scholar 

  9. Amiri, K., Farah, M.: Graph of concepts for semantic annotation of remotely sensed images based on direct neighbors in RAG. Can. J. Remote Sens. 44(6), 551–574 (2018)

    Article  Google Scholar 

  10. Bouzayani, A.: Automatic image annotation extension for search and classification. Thesis, Université de Lorraine (2018)

    Google Scholar 

  11. Nair, L.R., Subramaniam, K., PrasannaVenkatesan, G.K.D., Baskar, P.S., Jayasankar, T.: Essentiality for bridging the gap between low and semantic level features in image retrieval systems: an overview. J. Ambient Intell. Humanized Comput. (2020). https://doi.org/10.1007/s12652-020-02124-6

  12. Kwasnicka, H., Jain, L.C.: Semantic gap in image and video analysis. In: Kwaśnicka, H., Jain, L. (eds.) Bridging the Semantic Gap in Image and Video Analysis, Chapter 1. Springer, Cham (2018)

    Google Scholar 

  13. Pardede, J., Sitohang, B.: Reduce semantic gap in content-based image retrieval. Adv. Sci. Lett. 23(11), 10664–10671 (2017)

    Article  Google Scholar 

  14. Anusree, B.S.: Reducing semantic gap in image retrieval by integrating high level query and low level facial features. Int. J. Sci. Res. (IJSR) 4(3), 1415–1418 (2015)

    MathSciNet  Google Scholar 

  15. Melani, S.G., Ruben, M.C., Jose, J.G.: Semantic and structural image segmentation for prosthetic vision. J. PLoS One 15(1), (2020)

    Article  Google Scholar 

  16. Li, W.: Semantic-aware image analysis, thesis, Heidelberg, German, December 2019

    Google Scholar 

  17. Bindhu, V.: Biomedical image analysis using semantic segmentation. J. Innov. Image Process. (JIIP) 1(02), 91–101 (2019)

    Article  Google Scholar 

  18. Oujaoura, M., Minaoui, B., Fakir, M.: A semantic hybrid approach based on grouping adjacent regions and a combination of multiple descriptors and classifiers for automatic image annotation. Int. J. Pattern Recogn. Image Anal. 26(2), 316–335 (2016)

    Article  Google Scholar 

  19. Ogiela, M.R., Hachaj, T.: Cognitive methods for semantic image analysis in medical imaging applications. In: Natural User Interfaces in Medical Image Analysis, Chapter 2 (2015)

    Google Scholar 

  20. Ajimi, A., Sree, K.: Efficient automatic image annotation using weighted feature fusion and its optimization using genetic algorithm. Commun. Appl. Electron. 1(6), 15–19 (2015)

    Article  Google Scholar 

  21. Ivan, D., Luciano, S.: Mixing low-level and semantic features for image interpretation. In: Proceedings of Computer Science. Computer Vision – Workshops, Zurich, Switzerland, vol. 8926, pp. 283–298 (2015)

    Google Scholar 

  22. Cong, J.: Automatic image annotation using feature selection based on improving quantum particle swarm optimization. Signal Process. J. 109, 172–181 (2015)

    Article  Google Scholar 

  23. Dongping, Z., Li, Y., Peng, H., Lu, Y.: Image annotation based on joint feature selection with sparsity. Inf. Tech. J. 13, 102–109 (2014)

    Google Scholar 

  24. ping Tian, D.: A review on image feature extraction and representation. Tech. Multimedia Ubiquit. Eng. J. 8(4), 385–395 (2013)

    Google Scholar 

  25. Fernando, B., Fromont, E., Muselet, D., Sebban, M.: Discriminative feature fusion for image classification. In: IEEE Conference Computer on Vision and Pattern Recognition (CVPR), pp. 3434–3441 (2012)

    Google Scholar 

  26. Zhang, R.: Combining visual features and contextual information for image retrieval and annotation. Theses and dissertations, Ryerson University, Toronto, Ontario, Canada (2011)

    Google Scholar 

  27. Zhang, R., Guan, L., Zhang, L., Xin-Jing, W.: Multi-feature pLSA for combining visual features in image annotation. In: Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, Arizona, USA, 1513–1516 (2011)

    Google Scholar 

  28. Jian, H., Zhang, B., Qi, N.-M., Yang, Y.: Evaluating feature combination in object classification. Adv. Vis. Comput. J. 6939, 597–606 (2011)

    Google Scholar 

  29. Wang, M.T., Gong, S., Hua, X.: Combining global, regional and contextual features for automatic image annotation. Pattern Recogn. J. 42(2), 259–266 (2009)

    Google Scholar 

  30. Minaoui, B., Oujouara, M., Fakir, M., Sajieddine, M.: Toward an effective combination of multiple visual features for semantic image annotation: TELKOMNIKA. Indonesian J. Electric. Eng. 15(3), 401–408 (2015)

    Google Scholar 

  31. Haralick, R., Shanmugan, K., Dinstein, L.: Textural features for image classification. IEEE Trans. SMC, 3(6), 610–621 (1973)

    Google Scholar 

  32. Chonga, C., Raveendranb, P., Mukundan, R.: Translation and scale invariants of Legendre moments. Pattern Recogn. J. 37, 119–129 (2004)

    Article  Google Scholar 

  33. ETH-80 database image. http://www.d2.mpi-inf.mpg.de/Datasets/ETH80

  34. COIL-100 database image. http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

  35. Minaoui, B., Oujouara, M., Fakir, M.: Combining generative and discriminative classifiers for semantic automatic image annotation. Image Process. J. 8(5), 225–244 (2014)

    Google Scholar 

  36. Shih, Y., Cheng, S.: Automatic seeded region growing for color image segmentation. Image Vis. Comput. J. 23, 877–886 (2005)

    Article  Google Scholar 

  37. Becker, A., Naim, P.: les réseaux bayésiens: modèles graphiques de connaissance. Eyrolles (1999)

    Google Scholar 

  38. Sabine, B.: Modèles graphiques probabilistes pour la reconnaissance de formes. Theses, Nancy 2 University (2009)

    Google Scholar 

  39. George, H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: The Eleventh Conference on Uncertainty in Artificial Intelligence (1995)

    Google Scholar 

  40. Leray, Ph.: Réseaux bayésiens: apprentissage et modélisation de systèmes complexes, These, Rouen University (2006)

    Google Scholar 

  41. Tom, M.: Generative and discriminative classifier: Naïve bayes and logistic regression. Machine learning. Draft (2010)

    Google Scholar 

  42. Li, Z., Shi, P., Liu, X., Shi, Z.: Automatic image annotation with continuous PLSA. In: Proceedings of the 35th IEEE International Conference on Acoustics, Speech and Signal Processing, p. 806–809 (2010)

    Google Scholar 

  43. Carneiro, G., Chan, A., Moreno, P., et al.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 394–410 (2007)

    Article  Google Scholar 

  44. Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: SIGIR Proceedings (2007)

    Google Scholar 

  45. Zhang, R., Zhang, Z., Li, M., et al.: A probabilistic semantic model for image annotation and multi-model image retrieval. In: Proceedings of the 10th IEEE International Conference on Computer Vision, pp. 846–851 (2005)

    Google Scholar 

  46. Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of, pictures. In: Proceedings of Advances in Neural Information Processing Systems, pp. 251–259 (2003)

    Google Scholar 

  47. Yakhnenko, O.: Learning from text and images: generative and discriminative models for partially labeled data. Thesis, Iowa State University Ames (2009)

    Google Scholar 

  48. Ng, A.Y., Jordan, M.: On discriminative vs. generative classifiers: a comparison of logistic regression and naïve Bayes. Neural Inf. Process. Syst. 14, 841– 848 (2001)

    Google Scholar 

  49. Holub, L., Welling, M., Perona, P.: Hybrid generative-discriminative visual categorization. Inter. J. Comput. Vis. 77(3), 239–258 (2008)

    Article  Google Scholar 

  50. Ulusoy1, I., Bishop, M.: Comparison of generative and discriminative techniques for object detection and classification: toward category-level object recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, 173–195. Springer, Heidelberg (2006)

    Google Scholar 

  51. Lasserre, J., Bishop, C., Minka, P.: Principled hybrids of generative and discriminative models. In: Proceedings of the IEEE Computer Society Conf on Computer Vision and Pattern Recognition (CVPR), pp. 87–89 (2006)

    Google Scholar 

  52. Timothy, M., Shaogang, G., Xiang, T.: Finding rare classes: active learning with generative and discriminative models. IEEE Trans. Knowl. Data Eng. 25(2), 374–386 (2013)

    Article  Google Scholar 

  53. Cristani, A., Castellani, U., Murino, V.: A hybrid generative/discriminative classification framework based on free energy terms. In: ICCV (2009)

    Google Scholar 

  54. Anna, B., Andrew, Z., Xavier, M.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)

    Article  Google Scholar 

  55. Kelm, M., Pal, C., McCallum, A.: Combining generative and discriminative methods for pixel classification with multi-conditional learning. In: ICPR, pp. 828–832 (2006)

    Google Scholar 

  56. Bouchard, G., Triggs, B.: The trade-off between generative and discriminative classifiers. In: Proceedings of Computational Statistics Symposium. PhysicaVerlag, Springer, Heidelberg (2004)

    Google Scholar 

  57. Li, Z., Tang, Z., Zhao, W., Li, Z.: Combining generative/discriminative learning for automatic image annotation and retrieval. Int. J. Intell. Sci. 55–62 (2012)

    Google Scholar 

  58. Yang, S.H., Bian, J., Zha, H.: Hybrid generative/discriminative learning for automatic image annotation. In: Proceedings of the Uncertainly Artificial Intelligence (UAI), pp. 683–690 (2010)

    Google Scholar 

  59. Cao, Y., Liu, X., Bing, J., Song, L.: Using neural network to combine measures of word semantic similarity for image annotation. In: IEEE International Conference on Information and Automation (ICIA), pp. 833–837 (2011)

    Google Scholar 

  60. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–962 (2003)

    Google Scholar 

  61. Lepage, R., Solaiman, B.: Les réseaux de neurones artificiels et leurs applications en imagerie et en vision par ordinateur, Ecole de technologie supérieure (2003)

    Google Scholar 

  62. Ivanovici, M., Coliban, R.-M., Hatfaludi, C., Nicolae, I.E.: Color image complexity versus over-segmentation: a preliminary study on the correlation between complexity measures and number of segments. J. Imaging 6(16), 1–15 (2020)

    Google Scholar 

  63. Yao, Y., Wang, S.: Evaluating the effects of image texture analysis on plastic greenhouse segments via recognition of the OSI-USI-ETA-CEI pattern. J. Remote Sens. 11(231), 36–57 (2019)

    Google Scholar 

  64. Aloun, M.S., Hitam, M.S., Wan Yussof, W.N., Abdul Hamid, A.A.K., Bachok, Z.: Modified JSEG algorithm for reducing over-segmentation problems in underwater coral reef images. Int. J. Electric. Comput. Eng. (IJECE) 9(6), 5244–5252 (2019)

    Google Scholar 

  65. Sigut, J., Fumero, F., Nuñez, O.: Over- and under-segmentation evaluation based on the segmentation covering measure. In: 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 83–89 (2015)

    Google Scholar 

  66. Chen, B., Qiu, F., Wu, B., Du, H.: Image segmentation based on constrained spectral variance difference and edge penalty. J. Remote Sens. 7(5), 5980–6004 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minaoui, B., Oujaoura, M. (2021). Semantic Image Analysis for Automatic Image Annotation. In: Gherabi, N., Kacprzyk, J. (eds) Intelligent Systems in Big Data, Semantic Web and Machine Learning. Advances in Intelligent Systems and Computing, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-72588-4_4

Download citation

Publish with us

Policies and ethics