Skip to main content

Canonical Systems of Partial Differential Equations

  • Chapter
  • First Online:
Nonlinear Analysis, Differential Equations, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 173))

  • 1553 Accesses

Abstract

We use critical point theory to find solutions of the nonlinear steady state Schrödinger equations arising in the study of photonic lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Bartal, O. Manela, O. Cohen, J.W. Fleischer, M. Segev, Observation of second-band vortex solitons in 2D photonic lattices. Phys. Rev. Lett. 95, 053904 (2005)

    Article  Google Scholar 

  2. S. Chen, Y. Lei, Existence of steady-state solutions in a nonlinear photonic lattice model. J. Math. Phys. 52(6), 063508 (2011)

    Google Scholar 

  3. W. Chen, D.L. Mills, Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 62, 1746–1749 (1989)

    Article  Google Scholar 

  4. N.K. Efremidis, S. Sears, D.N. Christodoulides, Discrete solitons in photorefractive optically-induced photonic lattices. Phys.Rev.Lett. 85, 1863–1866 (2000)

    Article  Google Scholar 

  5. W.J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodolides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422(6928), 147–149 (2003)

    Article  Google Scholar 

  6. J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D.N. Christodoulides, Observation of vortex-ring discrete solitons in photonic lattices. Phys. Rev. Lett. 92, 123904 (2004)

    Article  Google Scholar 

  7. P. Kuchment, The mathematics of photonic crystals, in Mathematical Modeling in Optical Science. Frontiers Application of Mathematical, vol. 22 (SIAM, Philadelphia, 2001), pp. 207–272

    Google Scholar 

  8. C. Liu, Q. Ren, On the steady-state solutions of a nonlinear photonic lattice model. J. Math. Phys. 56, 031501, 1–12 (2015). https://doi.org/10.1063/1.4914333

    MathSciNet  Google Scholar 

  9. H. Martin, E.D. Eugenieva, Z. Chen, Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Martin et al. Phys. Rev. Lett. 92, 123902 (2004)

    Article  Google Scholar 

  10. D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, Z. Chen, Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004)

    Article  Google Scholar 

  11. A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  Google Scholar 

  12. M. Schechter, Linking Methods in Critical Point Theory (Birkhauser, Boston, 1999)

    Book  Google Scholar 

  13. M. Schechter, An introduction to nonlinear analysis, in Cambridge Studies in Advanced Mathematics, vol. 95 (Cambridge University, Cambridge, 2004)

    Google Scholar 

  14. M. Schechter, The use of Cerami sequences in critical point theory theory. Abstr. Appl. Anal. 2007, 28 (2007). Art. ID 58948

    Google Scholar 

  15. M. Schechter, Minimax Systems and Critical Point Theory (Birkhauser, Boston, 2009)

    Book  Google Scholar 

  16. M. Schechter, Steady state solutions for Schr/”odinger equations governing nonlinear optics. J. Math. Phys. 53, 043504, 8 pp. (2012)

    Google Scholar 

  17. M. Schechter, Photonic lattices. J. Math. Phys. 54, 061502, 7 pp. (2013)

    Google Scholar 

  18. M. Schechter, Critical Point Theory, Sandwich and Linking Systems (Birkhauser, Boston, 2020)

    Book  Google Scholar 

  19. M. Schechter, Schrodinger equations in nonlinear optics, in Nonlinear Analysis and Global Optimization, ed. by Th. M. Rassias, P.M. Pardalos (Spriger, 2021), pp. 449–459

    Google Scholar 

  20. Y. Yang, Solition in Field Theory and Nonlinear Analysis (Springer, New York, 2001)

    Book  Google Scholar 

  21. Y. Yang, R. Zhang, Steady state solutions for nonlinear Schrödinger equation arising in optics. J. Math. Phys. 50, 053501–053509 (2009)

    Article  MathSciNet  Google Scholar 

  22. J. Yang, A. Bezryadina, Z. Chen, I. Makasyuk, Observation of two-dimensional lattice vector solitons. Opt. Lett. 29, 1656 (2004)

    Article  Google Scholar 

  23. J. Yang, I. Makasyuk, A. Bezryadina, Z. Chen, Dipole and quadrupole solitons in optically induced two-dimensional photonic lattices: theory and experiment. Studies Appl. Math. 113, 389–412 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schechter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schechter, M. (2021). Canonical Systems of Partial Differential Equations. In: Rassias, T.M. (eds) Nonlinear Analysis, Differential Equations, and Applications. Springer Optimization and Its Applications, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-72563-1_22

Download citation

Publish with us

Policies and ethics