Skip to main content

Piecewise Polynomial Inversion of the Radon Transform in Three Space Dimensions via Plane Integration and Applications in Positron Emission Tomography

  • Chapter
  • First Online:
Nonlinear Analysis, Differential Equations, and Applications

Abstract

The inversion of the celebrated Radon transform in three dimensions involves two-dimensional plane integration. This inversion provides the mathematical foundation of the important field of medical imaging, known as three-dimensional positron emission tomography (3D PET). In this chapter, we present an analytical expression for the inversion of the three-dimensional Radon transform, as well as a novel numerical implementation of this formula, based on piecewise polynomials of the third degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Plane integrals are special cases of surface integrals, where the surface of integration is a plane.

  2. 2.

    Plane integrals are special cases of surface integrals, where the surface of integration is a plane.

References

  1. J. Radon, Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Akad. Wiss. 69, 262–277 (1917)

    MATH  Google Scholar 

  2. P. Kuchment, The Radon transform and medical imaging, in CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (2014)

    Google Scholar 

  3. N.E. Protonotarios, G.A. Kastis, A.S. Fokas, A New Approach for the Inversion of the Attenuated Radon Transform (Springer, Cham, 2019), pp. 433–457. https://doi.org/10.1007/978-3-030-31339-5_16

    MATH  Google Scholar 

  4. M.-Y. Chiu, H.H. Barrett, R.G. Simpson, Three-dimensional reconstruction from planar projections. JOSA 70(7), 755–762 (1980). https://doi.org/10.1364/JOSA.70.000755

    Article  MathSciNet  Google Scholar 

  5. M. Defrise, D. Townsend, R. Clack, Three-dimensional image reconstruction from complete projections. Phys. Med. Biol. 34(5), 573 (1989). https://doi.org/10.1088/0031-9155/34/5/002

  6. A. Averbuch, Y. Shkolnisky, 3d fourier based discrete radon transform. Appl. Comput. Harmon. Anal. 15(1), 33–69 (2003). https://doi.org/10.1016/S1063-5203(03)00030-7

    Article  MathSciNet  Google Scholar 

  7. J. Bikowski, K. Knudsen, J.L. Mueller, Direct numerical reconstruction of conductivities in three dimensions using scattering transforms. Inverse Probl. 27(1), 015002 (2010). https://doi.org/10.1088/0266-5611/27/1/015002

  8. F.H. Fahey, Data acquisition in PET imaging. J. Nucl. Med. Technol. 30(2), 39–49 (2002)

    Google Scholar 

  9. P. Kinahan, J. Rogers, Analytic 3D image reconstruction using all detected events. IEEE Trans. Nucl. Sci. 36, 964–968 (1989). https://doi.org/10.1109/23.34585

    Article  Google Scholar 

  10. P. La Rivière, X. Pan, Spline-based inverse radon transform in two and three dimensions. IEEE Trans. Nucl. Sci. 45(4), 2224–2231 (1998). https://doi.org/10.1109/23.708352

    Article  Google Scholar 

  11. M. Defrise, P.E. Kinahan, C.J. Michel, Image reconstruction algorithms in PET, in Positron Emission Tomography (Springer, Berlin, 2005), pp. 63–91. https://doi.org/10.1007/1-84628-007-9_4

    Book  Google Scholar 

  12. J. Gaskill, J.W. Sons, Linear Systems, Fourier Transforms, and Optics. Wiley Series in Pure and Applied Optics (Wiley, New York, 1978)

    Google Scholar 

  13. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University, New York, 2007)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the research programme “Inverse Problems and Medical Imaging” (200/947) of the Research Committee of the Academy of Athens. A.S. Fokas has been supported by EPSRC, UK in the form of a senior fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Protonotarios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Protonotarios, N.E., Kastis, G.A., Dikaios, N., Fokas, A.S. (2021). Piecewise Polynomial Inversion of the Radon Transform in Three Space Dimensions via Plane Integration and Applications in Positron Emission Tomography. In: Rassias, T.M. (eds) Nonlinear Analysis, Differential Equations, and Applications. Springer Optimization and Its Applications, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-72563-1_17

Download citation

Publish with us

Policies and ethics