Skip to main content

Structural Global Reliability Analysis of Floating Offshore Wind Turbines

  • Living reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

In the harvesting of deep-sea wind energy, reliability-based design methods are of great significance to achieve rational design of floating offshore wind turbines that support reliable and economical wind energy harvesting. In this chapter, issues associated with the structural global reliability analysis of floating offshore wind turbines are discussed. Since the structure of floating offshore wind turbines is a high-dimensional nonlinear dynamical system, the analysis method in the time domain is of the main concern. Moreover, uncertainties involved in both environmental dynamic loads and the structure itself should be reasonably considered in the reliability analysis. Along this line, the simulation methods of random wind field and irregular waves using physically based approach and mathematical expansion-based approach are firstly presented. Advantages and deficiencies of different methods are discussed as well. Besides, special attentions are paid to the joint probabilistic modeling of multiple environmental variables to reasonably consider the combined wind and wave actions on floating offshore wind turbines. Then, the integrated dynamic modeling methods, which lay the foundation for the structural reliability assessment of floating offshore wind turbines, are outlined. The structural dynamics, the calculation methods of different loads, the servo system including pitch and torque controllers, and the electrico-mechanico-structure interactions, are all taken into account in the integrated dynamic modeling. The main structural reliability methods are revisited as well, with particular focus on the recently developed probability density evolution method, which can be used for the efficient reliability analysis of floating offshore wind turbines. An example of the structural global reliability analysis of a spar-type floating offshore wind turbine based on the probability density evolution method is presented to illustrate the reliability analysis framework of floating offshore wind turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • P. Agarwal, L. Manuel, Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines. Appl. Ocean Res.33, 215–227 (2011)

    Article  Google Scholar 

  • M.K. Al-Solihat, M. Nahon, K. Behdinan, Dynamic modeling and simulation of a spar floating offshore wind turbine with consideration of the rotor speed variations. J. Dyn. Syst. Meas. Control.141, 081014 (2019)

    Article  Google Scholar 

  • C.J. Bai, W.C. Wang, Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renew. Sust. Energ. Rev.63, 506–519 (2016)

    Article  Google Scholar 

  • B.A. Benowitz, G. Deodatis, Simulation of wind velocities on long span structures: A novel stochastic wave based model. J. Wind Eng. Ind. Aerodyn.147, 154–163 (2015)

    Article  Google Scholar 

  • T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook, 2nd edn. (John Wiley & Sons, 2011)

    Book  Google Scholar 

  • S.K. Chakrabarti, Hydrodynamics of Offshore Structures (WIT Press, Southampton, 1994)

    Google Scholar 

  • L. Chen, B. Basu, wave-current interaction effects on structural responses of floating offshore wind turbines. Wind Energy26, 327–339 (2018)

    Google Scholar 

  • L. Chen, B. Basu, S.R.K. Nielsen, A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis. Ocean Eng.162, 304–315 (2018b)

    Article  Google Scholar 

  • J.B. Chen, F. Kong, Y.B. Peng, A stochastic harmonic function representation for non-stationary stochastic processes. Mech. Syst. Signal Process.96, 31–44 (2017)

    Article  Google Scholar 

  • J.B. Chen, Y.P. Song, Y.B. Peng, S.R.K. Nielsen, Z.L. Zhang, An efficient rotational sampling method of wind fields for wind turbine blade fatigue analysis. Renew. Energy146, 2170–2187 (2020)

    Article  Google Scholar 

  • J.B. Chen, Y.P. Song, Y.B. Peng, P.D. Spanos, Simulation of homogeneous fluctuating wind field in two spatial dimensions via a joint wave number-frequency power spectrum. J. Eng. Mech.144, 04018100 (2018a)

    Google Scholar 

  • J.B. Chen, W.L. Sun, J. Li, J. Xu, Stochastic harmonic function representation of stochastic processes. J. Appl. Mech.80, 011001 (2013)

    Article  Google Scholar 

  • M. Di Paola, Digital simulation of wind field velocity. J. Wind Eng. Ind. Aerodyn.74-76, 91–109 (1998)

    Article  Google Scholar 

  • DNV·GL. Environmental conditions and environmental loads. DNV GL Recommended Practice: DNVGLRP-C205. (2019)

    Google Scholar 

  • O.M. Faltinsen, Sea Loads on Ships and Offshore Structures (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  • B. Fu, J.B. Zhao, B.Q. Li, J. Yao, A.R. Mouafo Teifouet, L.Y. Sun, Z.Y. Wang, Fatigue reliability analysis of wind turbine tower under random wind load. Struct. Saf.87, 101982 (2020)

    Article  Google Scholar 

  • I. Gatin, V. Vukčević, H. Jasak, A framework for efficient irregular wave simulations using Higher Order Spectral method coupled with viscous two phase model. J. Ocean Eng. Sci.2, 253–267 (2017)

    Article  Google Scholar 

  • M. Hall, A. Goupee, Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean Eng.104, 590–603 (2015)

    Article  Google Scholar 

  • M.O.L. Hansen, J.N. Sørensen, S. Voutsinas, N. Sørensen, H.A. Madsen, State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aerosp. Sci.42, 285–330 (2006)

    Article  Google Scholar 

  • IEC. Wind energy generation systems-Part 1: Design requirements (4th ed.). IEC International Standard: 61400-1. (International Electrotechnical Commission (IEC), Cham, 2019a)

    Google Scholar 

  • IEC. Wind energy generation systems-Part 3-1: Design requirements for fixed offshore wind turbines. IEC International Standard: 61400-3-1. (International Electrotechnical Commission (IEC), Cham, 2019b)

    Google Scholar 

  • IEC. Wind energy generation systems-Part 3-2: Design requirements for floating offshore wind turbines. IEC International Standard: 61400-3-2. (International Electrotechnical Commission (IEC), Cham, 2019c)

    Google Scholar 

  • Z.Y. Jiang, W.F. Hu, W.B. Dong, Z. Gao, Z.R. Ren, Structural reliability analysis of wind turbines: a review. Energies10, 2099 (2017)

    Article  Google Scholar 

  • Z.M. Jiang, J. Li, Analytical solutions of the generalized probability density evolution equation of three classes stochastic systems. Chin. J. Theor. Appl. Mech.48, 413–421 (2016) (in Chinese)

    Google Scholar 

  • J. Jonkman, Definition of the Floating System for Phase IV of OC3 (National Renewable Energy Laboratory (NREL), Golden, 2010)

    Book  Google Scholar 

  • J. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development (National Renewable Energy Laboratory (NREL), Golden, 2009)

    Book  Google Scholar 

  • M. Karimirad, Offshore Energy Structures: For Wind Power, Wave Energy and Hybrid Marine Platforms (Springer, Cham, 2014)

    Book  Google Scholar 

  • S. Krenk, R.N. Moller, Turbulent wind field representation and conditional mean-field simulation. Proc Roy Soc A: Math, Phys Eng Sci475, 20180887 (2019)

    Article  Google Scholar 

  • J. Li, J.B. Chen, Stochastic Dynamics of Structures (John Wiley & Sons, Singapore, 2009)

    Book  Google Scholar 

  • J. Li, J.B. Chen, W.L. Sun, Y.B. Peng, Advances of the probability density evolution method for nonlinear stochastic systems. Probabilistic Eng. Mech.28, 132–142 (2012a)

    Article  Google Scholar 

  • J. Li, Y.B. Peng, Q. Yan, Modeling and simulation of fluctuating wind speeds using evolutionary phase spectrum. Probabilistic Eng. Mech.32, 48–55 (2013)

    Article  Google Scholar 

  • J. Li, Q. Yan, J.B. Chen, Stochastic modeling of engineering dynamic excitations for stochastic dynamics of structures. Probabilistic Eng. Mech.27, 19–28 (2012b)

    Article  Google Scholar 

  • X. Li, W. Zhang, Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures. Renew. Energy147, 764–775 (2020)

    Article  Google Scholar 

  • M.Z. Lyu, J.B. Chen, First-passage reliability of high-dimensional nonlinear systems under additive excitation by the ensemble-evolving-based generalized density evolution equation. Probabilistic Eng. Mech.63, 103119 (2021)

    Article  Google Scholar 

  • J. Mann, The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech.273, 141–168 (1994)

    Article  Google Scholar 

  • R.E. Melchers, A.T. Beck, Structural Reliability Analysis and Prediction (Wiley, Hoboken, 2018)

    Google Scholar 

  • H. Namik, K. Stol, Individual blade pitch control of floating offshore wind turbines. Wind Energy13, 74–85 (2010)

    Article  Google Scholar 

  • R.B. Nelsen, An Introduction to Copulas, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  • A. Nybø, F.G. Nielsen, J. Reuder, M.J. Churchfield, M. Godvik, Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines. Wind Energy23, 1810–1830 (2020)

    Article  Google Scholar 

  • V. Papadopoulos, I. Kalogeris, A Galerkin-based formulation of the probability density evolution method for general stochastic finite element systems. Comput. Mech.57, 701–716 (2016)

    Article  Google Scholar 

  • L.L. Peng, G.Q. Huang, X.Z. Chen, A. Kareem, Simulation of multivariate nonstationary random processes: hybrid stochastic wave and proper orthogonal decomposition approach. J. Eng. Mech.143, 04017064 (2017)

    Google Scholar 

  • M. Shinozuka, Simulation of multivariate and multidimensional random processes. J. Acoust. Soc. Am.49, 357–368 (1971)

    Article  Google Scholar 

  • E. Simiu, R.H. Scanlan, Wind Effects on Structures: Fundamentals and Applications to Design, 3rd edn. (John Wiley & Sons, New York, 1996)

    Google Scholar 

  • Y.P. Song, B. Basu, Z.L. Zhang, J.D. Sørensen, J. Li, J.B. Chen, Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method. Renew. Energy168, 991–1014 (2021)

    Article  Google Scholar 

  • Y.P. Song, J.B. Chen, M. Beer, L. Comerford, Wind speed field simulation via stochastic harmonic function representation based on wavenumber–frequency spectrum. J. Eng. Mech.145, 04019086 (2019)

    Google Scholar 

  • Y.P. Song, J.B. Chen, Y.B. Peng, P.D. Spanos, J. Li, Simulation of nonhomogeneous fluctuating wind speed field in two-spatial dimensions via an evolutionary wavenumber-frequency joint power spectrum. J. Wind Eng. Ind. Aerodyn.179, 250–259 (2018)

    Article  Google Scholar 

  • P. Veers, K. Dykes, E. Lantz, S. Barth, C.L. Bottasso, O. Carlson, A. Clifton, J. Green, P. Green, H. Holttinen, D. Laird, V. Lehtomäki, J.K. Lundquist, J. Manwell, M. Marquis, C. Meneveau, P. Moriarty, X. Munduate, M. Muskulus, J. Naughton, L. Pao, J. Paquette, J. Peinke, A. Robertson, J. Sanz Rodrigo, A.M. Sempreviva, J.C. Smith, A. Tuohy, R. Wiser, Grand challenges in the science of wind energy. Science366, eaau2027 (2019)

    Article  Google Scholar 

  • F. Vorpahl, M. Strobel, J.M. Jonkman, T.J. Larsen, P. Passon, J. Nichols, Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXIII. Wind Energy17, 519–547 (2014)

    Article  Google Scholar 

  • Y.Z. Xu, J. Li, An ocean wave spectrum model based on quasi-laminar wind-induced wave generation mechanism. Ocean Eng.30, 83–91 (2012) (in Chinese)

    Google Scholar 

  • Z.L. Zhang, C. Høeg, Dynamics and control of spar-type floating offshore wind turbines with tuned liquid column dampers. Struct. Control. Health Monit.27, e2532 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, J., Song, Y., Li, J. (2022). Structural Global Reliability Analysis of Floating Offshore Wind Turbines. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-72322-4_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72322-4_91-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72322-4

  • Online ISBN: 978-3-030-72322-4

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics